
Landau analysis of the symmetry of magneti struture and magnetoeletriinterations in multiferroisA. B. HarrisDepartment of Physis and Astronomy, University of Pennsylvania, Philadelphia, PA 19104(Dated: July 9, 2007)This paper represents a detailed instrution manual for onstruting the Landau expansion formagnetoeletri oupling in inommensurate ferroeletri magnets, inluding Ni3V2O8, TbMnO3,MnWO4, TbMn2O5, YMn2O5, CuFeO2, and RbFe(MO4)2. The �rst step is to desribe the mag-neti ordering in terms of symmetry adapted oordinates whih serve as omplex valued magnetiorder parameters whose transformation properties are displayed. In so doing we use the previouslyproposed tehnique to exploit inversion symmetry, sine this symmetry has seemingly been uni-versally overlooked. Inversion symmetry severely redues the number of �tting parameters neededto desribe the spin struture, usually by �xing the relative phases of the omplex �tting param-eters. By introduing order parameters of known symmetry to desribe the magneti ordering,we are able to onstrut the trilinear magneto-eletri interation whih ouples inommensuratemagneti order to the uniform polarization and thereby we treat many of the multiferroi systemsso far investigated. In most ases the symmetry of the magneto-eletri interation determines thediretion of the magnetially indued spontaneous polarization. We use the Landau desription ofthe magneto-eletri phase transition to disuss the qualitative behavior of various suseptibiltiesnear the phase transition. The onsequenes of symmetry for optial properties suh as polarizationindued mixing of Raman and infra-red phonons and eletromagnons are analyzed. The impliationof this theory for mirosopi models is disussed.PACS numbers: 75.25.+z, 75.10.Jm, 75.40.GbI. INTRODUCTIONReently there has been inreasing interest in sys-tems (multiferrois) whih exhibit an observable intera-tion between magneti and eletri degrees of freedom.1Muh interest has entered on a family of multifer-rois whih display a phase transition in whih uni-form ferroeletri order appears simultaneously with in-ommensurate magneti ordering. Early examples ofsuh a system whose ferroeletri behavior and mag-neti struture have been thoroughly studied are TerbiumManganate, TbMnO3 (TMO).2,3 and Nikel Vanadate,Ni3V2O8 (NVO)4{7. A similar omprehensive analysishas reently been given for the triangular lattie om-pound RbFe(MoO4)2 (RFMO).8 A number of other sys-tems have been shown to have ombined magneti andferroeletri transitions,9{14 but the investigation of theirmagneti struture has been less systemati. Initiallythis ombined transition was somewhat mysterious, butsoon a Landau expansion was developed4 to provide aphenomenologial explanation of this phenomenon. Analternative piture, similar to an earlier result15 basedon the onept of a \spin-urrent," and whih we referto as the \spiral formulation,"16 has gained popularitydue to its simpliity, but as we will disuss, the Landautheory is more universally appliable and has a numberof advantages. The purpose of the present paper is todesribe the Landau formulation in the simplest possi-ble terms and to apply it to a large number of urrentlystudied multiferrois. In this way we hope to demystifythis formulation.It should be noted that this phenomenon (whih we

all \magnetially indued ferroeletriity") is loselyrelated to the similar behavior of so-alled \improperferroeletris," whih are ommonly understood to bethe analogous systems in whih uniform magnetiorder (ferromagnetism or antiferromagnetism) driveferroeletriity.17 Several deades ago suh systems werestudied18 and reviewed17,19 and present many parallelswith the reent developments.One of the problems one enounters at the outset ishow to properly desribe the magneti struture of sys-tems with ompliated unit ells. This, of ourse, is avery old subjet,20{22 but surprisingly, as will be do-umented below, the full rami�ations of symmetry arenot widely known. Aordingly, we feel it neessary torepeat the desription of the symmetry analysis of mag-neti strutures. While the �rst part of this symmetryanalysis is well known to experts, we review it here, espe-ially beause our approah is often far simpler and lesstehnial than the standard one. However, either ap-proah lays the groundwork for inorporating the e�etsof inversion symmetry, whih, in the reent literature,have often been overlooked until our analysis of NVO3{7and TMO.3 Inversion symmetry was also addressed byShweizer with a subsequent orretion.23 Very reentlya more formal approah to this problem has been givenby Radaelli and Chapon24 and by Shweizer et al.25 But,at least in the simplest ases, the approah initially pro-posed by us and used here seems easiest. We here applythis formalism to a number of urrently studied multifer-rois, suh as DyMnO3 (DMO),9 MnWO4 (MWO)13,14,TbMn2O5 (TMO25),11,12 YMn2O5 (YMO25)12, CuFeO2(CFO),10 and RFMO.8 As was the ase for NVO4{7 andTMO,3 one one has in hand the symmetry properties



2of the magneti order parameters, one is then able toonstrut the trilinear magnetoeletri oupling term inthe free energy whih provides a phenomenologial expla-nation of the ombined magneti and ferroeletri phasetransition.This paper is organized in onformity with the aboveplan. In Se. II we review a simpli�ed version of thesymmetry analysis known as representation theory. Herewe also review the reently proposed3{7 tehnique to in-orporate the onsequenes of inversion symmetry. InSe. III we apply this formalism to develop magnetiorder parameters for a number of multiferroi systemsand in Eq. (126) we give a simple example to show howinversion symmetry inuenes the symmetry of the al-lowed spin distribution. Then in Se. IV, we use thesymmetry of the order parameters to onstrut a magne-toeletri oupling free energy, whose symmetry proper-ties are manifested. We give an analysis of the Landaudesription of the magneto-eletri phase transition. Inpartiular we disuss the behavior of various suseptibil-ities near the phase transition. In Se. V we disuss howthe magneto-eletri interation leads to mixing of infra-red ative and Raman ative phonon modes and to themixing of magnons with phonons. Finally, in Se. VI wesummarize the results of these alulations and disusstheir relation to alulations based on the spin urrentmodel15 or the phenomenology of ontinuum theory.16II. REVIEW OF REPRESENTATION THEORYAs we shall see, to understand the phenomenology ofthe magnetoeletri oupling whih gives rise to the om-bined magneti and ferroeletri phase transition, it is es-sential to haraterize and properly understand the sym-metry of the magneti ordering. In addition, as we shallsee, to fully inlude symmetry restritions on possiblemagneti strutures that an be aessed via a ontinu-ous phase transition is an extremely powerful aid in themagneti struture analysis, Aordingly in this setionwe review how symmetry onsiderations restrit the pos-sible magneti strutures whih an appear at an order-ing transition. The full symmetry analysis has previouslybeen presented elsewhere,3{7, but it is useful to repeat ithere both to �x the notation and to give the reader on-venient aess to this analysis whih is so essential tothe present disussion. To avoid the omplexities of themost general form of this analysis (alled representationtheory),23{25 we will limit disussion to systems havingsome ruial simplifying features. First, we limit on-sideration to systems in whih the magneti ordering isinommensurate. In the examples we hoose k will usu-ally lie along a symmetry diretion of the rystal. Se-ond, we only onsider systems whih have a enter ofinversion symmetry, beause it is only suh systems thathave a sharp phase transition at whih long-range ferro-eletri order appears. Thirdly, we restrit attention torystals having relatively simple symmetry. (What this

means is that exept for our disussion of TbMn2O5 wewill onsider systems where we do not need the full ap-paratus of group theory, but an get away with simplylabeling the spin funtions whih desribe magneti orderby their eigenvalue under various symmetry operations.)By avoiding the omplexities of the most general situ-ations, it is hoped that this paper will be aessible tomore readers. Finally, as we will see, it is ruial thatthe phase transitions we analyze are either ontinuousor very nearly so. In many of the examples we disuss,our simple approah6 is vastly simpler than that of stan-dard representation theory26{28 augmented by speial-ized tehniques to expliitly exploit inversion symmetry.A. Symmetry Analysis of the Magneti FreeEnergyIn this subsetion we give a review of the formalismused previously3,4 and presented in detail in Refs. 6,7.Sine we are mainly interested in symmetry properties,we will desribe the magneti ordering by a version ofmean-�eld theory in whih one writes the magneti freeenergy FM asFM = 12 Xr;�;r0� ��1��(r; r0)S�(r)S�(r0)+O �S4� ; (1)where S�(r) is the thermally averaged �-omponent ofthe spin at position r. In a moment, we will give anexpliit approximation for the inverse suseptibility �.We now introdue Fourier transforms in either of twoequivalent formulations. In the �rst formulation (whihwe refer to as \atual position") one writes the Fouriertransform asS�(q; �) = N�1XR S�(R+ � )eiq�(R+� ) (2)whereas in the seond (whih we refer to as \unit ell")one writesS�(q; �) = N�1XR S�(R+ � )eiq�R ; (3)where N is the number of unit ells in the system, �is the loation of the �th site within the unit ell, andR is a lattie vetor. Note that in Eq. (2) the phasefator in the Fourier transform is de�ned in terms of theatual position of the spin rather than in terms of theorigin of the unit ell, as is done in Eq. (3). In someases (viz. NVO) the results are simpler in the atualposition formulation whereas for others (viz. TMO) theunit ell formulation is simpler. We will use whiheverformulation is simpler. In either ase the fat that S�has to be real indiates thatS�(�q; �) = S�(q; �)� : (4)



3We thus haveFM = 12 Xq;�;� 0;�;� ��1��(q; �; � 0)S�(q; �)�S�(q; � 0)+O �S4� ; (5)where, for the \atual position" formulation,��1��(q; �; � 0) = XR ��1��(�;R+ � 0)eiq�(R+� 0�� ) (6)and for the \unit ell" formulation��1��(q; �; � 0) = XR ��1��(�;R+ � 0)eiq�R : (7)To make our disussion more onrete we ite the sim-plest approximation for a system of spins on a orthorhom-bi Bravais lattie with general anisotropi exhange ou-pling, so that the Hamiltonian isH = X�;�;r;r0 J��(r; r0)s�(r)s�(r0) +X�r K�s�(r)2 ;(8)where s�(r) is the �-omponent of the spin operator atr and we have inluded a single ion anisotropy energyassuming three inequivalent axes, so that the K� are alldi�erent. One has that��1��(r; r0) = J��(r; r0) + [K� + kT ℄Æ�;�Ær;r0 ; (9)where Æa;b is unity if a = b and is zero otherwise and  isa spin-dependent onstant of order unity, so that kT isthe entropy assoiated with a spin S. Then��1��(q) = Æ���2J1 [os(a�qx) + os(a�qy)+ os(a�qz)℄ + akT +K�� ; (10)where a� is the lattie onstant in the �-diretion29 andwe assume that Kx < Ky < Kz. Graphs of ��1(q) areshown in Fig. 1 for both the ferromagneti (J1 < 0) andantiferromagneti (J1 > 0) ases. For the ferromagnetiase we now introdue a ompeting antiferromagnetinext-nearest neighbor (nnn) interation J2 > 0 along thex-axis, so that��1��(qx; qy = 0; qz = 0) = [4J1 + 2J1 os(axqx)+2J2 os(2axqx) + akT +K�℄ ; (11)and this is also shown in Fig. 1. As T is lowered onereahes a ritial temperature where one of the eigen-values of the inverse suseptibility matrix beomes zero.This indiates that the paramagneti phase is unstablewith respet to order orresponding to the ritial eigen-vetor assoiated with the zero eigenvalue. For the fer-romagnet this happens for zero wavevetor and for theantiferromagnet for a zone boundary wavevetor in agree-ment with our obvious expetation. For ompeting in-terations we see that the values of the J 's determine

a wavevetor at whih an eigenvalue of ��1 is minimal.This is the phenomenon alled \wavevetor seletion,"and in this ase the seleted value of q is determined byextremizing ��1 to be30os(axq) = J1=(4J2) ; (12)providing J2 > �J1=4. (Otherwise the system is ferro-magneti.) Note also, that rystal symmetry may seleta set of symmetry-related wavevetors, whih omprisewhat is known as the star of q. (For instane, if the sys-tem were tetragonal, then rystal symmetry would implythat one has the same nnn interations along the y-axis,in whih ase the system selets a wavevetor along thex-axis and one of equal magnitude along the y-axis.From the above disussion it should be lear that ifwe assume a ontinuous transition so that the transi-tion is assoiated with the instability in the terms in thefree energy quadrati in the spin amplitudes, then thenature of the ordered phase is determined by the rit-ial eigenvetor of the inverse suseptibility, i. e. theeigenvetor assoiated with the eigenvalue of inverse sus-eptibility whih �rst goes to zero as the temperature isredued. Aordingly, the aim of this paper is to analyzehow rystal symmetry a�ets the possible forms of theritial eigenvetor.When the unit ell ontains n > 1 spins, the inversesuseptibility for eah wavevetor q is a 3n� 3n matrix.The ordering transition ours when, for some seletedwavevetor(s), an eigenvalue �rst beomes zero as thetemperature is redued. In the above simple examplesinvolving isotropi exhange interations, the inverse sus-eptibility was 3� 3 diagonal matrix, so that eah eigen-vetor trivially has only one nonzero omponent. Theritial eigenvetor has spin oriented along the easiestaxis, i. e. the one for whih K� is minimal. In thepresent more general ase n > 1 and arbitrary intera-tions onsistent with rystal symmetry are allowed. Toavoid the tehnialities of group theory, we use as ourguiding priniple the fat that the free energy, being anexpansion in powers of the magnetizations relative to thethe paramagneti state, must be invariant under all thesymmetry operations of the rystal.26,31 This is the samepriniple that one uses in disussing the symmetry of theeletrostati potential in a rystal.32 We now fous ourattention on the ritially seleted wavevetor q whihhas an eigenvalue whih �rst beomes zero as the tem-perature is lowered. This value of q is determined bythe interations and we will onsider it to be an experi-mentally determined parameter. Operations whih leavethe quadrati free energy invariant must leave invariantthe term in the free energy F2(q) whih involves only theseleted wavevetor q, namelyF2(q) � 12 X�;� 0;�;� ��1��(q; �; � 0)S�(q; �)�S�(q; � 0) :(13)Any symmetry operation takes the original variables be-fore transformation, S�(q; �), into new ones indiated by



4
0 1 2 3

0

2

4

6

0 1 2 3
0

2

4

6

0 1 2 3
0

2

4

6

FIG. 1: Inverse suseptibility ��1(q; 0; 0). a) Ferromagneti model (J1 < 0), b) Antiferromagneti model (J1 < 0), and )Model with ompeting interations (the nn interation is antiferromagneti). In eah panel one sees three groups of urves.Eah group onsists of the three urves for ���(q) whih depend on the omponent label � due to the anisotropy. The x axisis the easiest axis and the z axis is the hardest. (If the system is orthorhombi the three axes must all be inequivalent. Thesolid urves are for the highest temperature, the dashed urves are for an intermediate temperature, and the dash-dot urvesare for T = T, the ritial temperature for magneti ordering. Panel ) illustrates the nontrivial wavevetor seletion whihours when one has ompeting interations.primes. We write this transformation asS0�(q; � ) =X�0� U�� ;�0� 0S�0(q; � 0) : (14)Aording to a well known statement of elementary quan-tum mehanis, if a set of ommuting operators T1; T2 : : :also ommute with ��1(q), then the eigenvetors of��1(q) are simultaneously eigenvetors of eah of theTi's. (This muh reprodues a well known analysis.20{22We will later onsider the e�et of inversion, the analysisof whih seems to have been universally overlooked). Wewill apply this simple ondition to a number of multi-ferroi systems urrently under investigation. (This ap-proah an be muh more straightforward than the stan-dard one when the operations whih onserve wavevetorunavoidably involve translations.) As a �rst example weonsider the ase of NVO and use the \atual position"Fourier transforms. In Table I we give the general posi-tions (this set of positions is the so-alled Wyko� orbit)for the spae group Cma (#64 in Ref. 33) of NVOand this table de�nes the operations of the spae groupof Cma. In Table II we list the positions of the twotypes of sites oupied by the magneti (Ni) ions, whihare alled \spine" and \ross-tie" sites in reognition oftheir distintive oordination in the lattie, as an be seenfrom Fig. 3, where we show the onventional unit ell ofNVO. Experiments6,38 indiate that as the temperatureis lowered, the system �rst develops inommensurate or-der with q along the a-diretion with q � 0:28.39 In Fig.2 we show the phase diagram in the T -H plane for Halong the  axis, for T > 2K.6The group of operations whih onserve wavevetor aregenerated by a) the two-fold rotation 2x and b) the glideoperation mz, both of whih are de�ned in Table I. Wenow disuss how the Fourier spin omponents transformunder various symmetry operations. Here primed quan-tities denote the value of the quantity after transforma-tion. Let O � OsOr be a symmetry operation whihwe deompose into operations on the spin Os and on theposition Or. The e�et of transforming a spin by suh
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FIG. 2: Shemati phase diagram for NVO for a magneti�eld applied along the  diretion, taken from Ref. 6. HereAF is an antiferromagneti phase with a weak ferromagnetimoment, P is the paramagneti phase, HTI is the \`high tem-perature inommensurate" phase in whih the moments areessentially aligned along the a axis with a sinusoidally mod-ulated amplitude (aording to irrep �4) and LTI is the \lowtemperature inommensurate" phase in whih transverse or-der along the b axis appears to make an elliptially polarizedorder parameter wave (aording to irreps �4 and �1). Aspontaneous polarization P appears only in the LTI phasewith P along b.Er = (x; y; z) 2r = (x; y + 1=2; z + 1=2)2br = (x; y + 1=2; z + 1=2) 2ar = (x; y; z)Ir = (x; y; z) mr = (x; y + 1=2; z + 1=2)mbr = (x; y + 1=2; z + 1=2) mar = (x; y; z)TABLE I: General positions33,34 within the primitive unit ellfor Cma whih desribe the symmetry operations36 of thisspae group. 2� is a two-fold rotation (or srew) axis and m�is a mirror (or glide) whih takes r� into �r�.an operator is to replae the spin at the \�nal" positionRf by the transformed spin whih initially was at theposition O�1r Rf . So we writeS0�(Rf ; � f ) = OsS�(O�1r [Rf ; � f ℄)



5rs1 = (0:25;�0:13; 0:25)rs2 = (0:25; 0:13; 0:75)rs3 = (0:75; 0:13; 0:75)rs4 = (0:75;�0:13; 0:25)r1 = (0; 0; 0)r2 = (0:5; 0; 0:5)TABLE II: Positions34,35 of Ni2+ arrying S=1 within theprimitive unit ell illustrated in Fig. 3. Here rsn denotes theposition of the nth spine site and rn that of the nth ross-tiesite. NVO orders in spae group Cma, so there are six moreatoms in the onventional orthorhombi unit ell whih areobtained by a translation through (0:5a; 0:5b; 0).= ��(Os)S�(Ri; � i) ; (15)where the subsripts \i" and \f" denote initial and �nalvalues and ��(Os) is the fator introdued by Os for apseudovetor, namely�x(2x) = 1 ; �y(2x) = �z(2x) = �1 ;�x(mz) = �y(mz) = �1 ; �z(mz) = 1 : (16)Note that OS�(R; � ) is not the result of applying O tomove and reorient the spin at R + � , but instead is thevalue of the spin at R + � after the spin distributionis ated upon by O. Thus, for atual position Fouriertransforms we haveS0�(q; � f ) = N�1XR S0�(Rf ; � f )eiq�(Rf+� f )= ��(Os)N�1XR S�(Ri; � i)eiq�(Rf+� f )= ��(Os)S�(q; � i)eiq�[Rf+� f�Ri�� i℄ :(17)We may write this asOS�(q; � f ) = ��(Os)S�(q; � i)eiq�[Rf+� f�Ri�� i℄ :(18)This formulation may not be totally intuitive, beauseone is tempted to regard the operation O ating on aspin at an initial loation and taking it (and perhapsreorienting it) to another loation. Here, instead, weonsider the spin distribution and how the transformeddistribution at a loation is related to the distribution atthe initial loation.Similarly, the result for unit ell Fourier transforms isS0�(q; � f ) = ��(Os)S0�(q; � i)eiq�[Rf�Ri℄ : (19)As before, we may write this asOS�(q; � f ) = ��(Os)S�(q; � i)eiq�[Rf�Ri℄ : (20)Under transformation by inversion, ��(I) = 1 andS0�(q; � f )� = N�1XR S�(Ri; � i)e�iq�(Rf+� f )= S�(q; � i)eiq�[�Rf�� f�Ri�� i℄= S�(q; � i) (21)
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FIG. 3: (Color online). Ni sites in the onventional unit ell ofNVO. The primitive translation vetors vn are v1 = (a=2)â+(b=2)b̂, v2 = (a=2)â � (b=2)b̂, and v3 = ̂. The \ross-tie"sites (on-line=blue) 1 and 2 lie in a plane with b = 0. The\spine" sites (on-line=red) are labeled s1, s2, s3, and s4 andthey may be visualized as forming hains parallel to the a-axis. These hains are in the bukled plane with b = �Æ,where Æ = 0:13b as is indiated. Cross-tie sites in adjaentplanes (displaed by (�b=2)b̂) are indiated by open irles.Spine sites in adjaent planes are loated diretly above (orbelow) the sites in the plane shown. In the inommensuratephases the wavevetor desribing magneti ordering lies alongthe a axis. The axis of the two-fold rotation about the x-axisis shown. The glide plane is indiated by the mirror plane atz = 34 and the arrow above mz indiates that a translation ofb=2 in the y-diretion is involved.for atual position Fourier transforms. For unit elltransforms we getS0�(q; � f )� = S�(q; � i)eiq�[�Rf�Ri℄= S�(q; � i)eiq�[� f+� i℄ : (22)Now we apply this formalism to �nd the atual positionFourier oeÆients whih are eigenfuntions of the twooperators 2x and mz . In so doing note the simpliity ofEq. (17): sine, for NVO, the operations 2x and mz donot hange the x oordinate, we simply haveS0�(q; � f ) = ��S0�(q; � i) : (23)Thus the eigenvalue onditions for 2x ating on the spinesites (#1-#4) areS�(q; 1)0 = ��(2x)S�(q; 2) = �(2x)S�(q; 1)S�(q; 2)0 = ��(2x)S�(q; 1) = �(2x)S�(q; 2)S�(q; 3)0 = ��(2x)S�(q; 4) = �(2x)S�(q; 3)S�(q; 4)0 = ��(2x)S�(q; 3) = �(2x)S�(q; 4) ; (24)



6Irrep �1 �2 �3 �4�(2x) = +1 +1 �1 �1�(mz) = +1 �1 �1 +1n(�) = 4 4 5 5S(q; s1) nasnbsns nasnbsns nasnbsns nasnbssS(q; s2) nas�nbs�ns nas�nbs�ns �nasnbsns �nasnbsnsS(q; s3) �nasnbs�ns nas�nbsns �nasnbs�ns nas�nbsnsS(q; s4) �nas�nbsns nasnbs�ns nasnbs�ns �nas�nbsnsS(q; 1) na00 na00 0nbn 0nbnS(q; 2) �na00 na00 0nb�n 0�nbnTABLE III: Allowed spin funtions (i. e. atual positionFourier oeÆients) within the unit ell of NVO for waveve-tor (q; 0; 0) whih are eigenvetors of 2x and mz with theeigenvalues � listed. Inversion symmetry is not yet taken intoaount. Eah of the four ombinations of eigenvalues rep-resents a di�erent symmetry, whih we identify with a sym-metry label �n. In group theoretial language �n is referedto as an irreduible representation (irrep), fow whih we usethe notation of Ref. 6. n(�) is the number of independentstruture parameters in the wavefuntion having the symme-try label �. Group theory indiates that n(�) is the number oftimes the irrep � is ontained in the original (18-dimensional)representation orresponding to the S�(q; �). The labeling ofthe sites, � is as in Table II and Fig. 3. Here n�p (p =s or ,� = a; b; ) denotes the omplex quantity n�p (q).from whih we see that �(2x) = �1 andS�(q; 2) = [��(2x)=�(2x)℄S�(q; 1) ;S�(q; 3) = [��(2x)=�(2x)℄S�(q; 4) : (25)The eigenvalue onditions formz ating on the spine sitesare S�(q; 1)0 = ��(mz)S�(q; 4) = �(mz)S�(q; 1)S�(q; 4)0 = ��(mz)S�(q; 1) = �(mz)S�(q; 4)S�(q; 2)0 = ��(mz)S�(q; 3) = �(mz)S�(q; 2)S�(q; 3)0 = ��(mz)S�(q; 2) = �(mz)S�(q; 3) ; (26)from whih we see that �(mz) = �1 andS�(q; 4) = [��(mz)=�(mz)℄S�(q; 1) : (27)We thereby onstrut the wavefuntions for the spinesites whih are simultaneously eigenvetors of 2x and mzand these are given in Table III. The results for theross-tie sites are obtained in the same way and are also

given in the table. Eah set of eigenvalues orrespondsorresponds to a di�erent symmetry label (irrep), heredenoted �n. Sine eah operator an have either of twoeigenvalues, we have four symmetry labels to onsider.Note that these spin funtions, sine they are atuallyFourier oeÆients, are omplex-valued quantities. [Thespin itself is real beause F (�q) = F (q)�.℄ Eah olumnof Table III gives the most general form of an allowedeigenvetor for whih one has n(�) = 4 or n(�) = 5 (de-pending on the irrep) independent omplex onstants. Interms of the amplitude X(m)� (q) of themth eigenfuntionof irrep � (at wavevetor q) and the orresponding eigen-value �(m)� (q) the free energy is diagonal:F2 = 12Xq X� n(�)Xm=1�(m)� (q)jX(m)� (q)j2 ; (28)These eigenvalues an be identi�ed as the inverse susep-tibility assoiated with \normal modes" of spin on�gu-rations. To further illustrate the meaning of this tablewe expliitly write, in Eq. (48), below, the spin distri-bution arising from one irrep, �4. These spin funtionsare shematially shown for the spine sites in Fig. 15,below. Here our main interest is in the mode whih �rstbeomes unstable as the temperature is lowered.So far, the present analysis reprodues the standardresults and indeed omputer programs exist to onstrutsuh tables. But for multiferrois it may be quiker toobtain and understand how to onstrut the possible spinfuntions by hand rather than to understand how to usethe program! Usually these programs give the resultsin terms of unit ell Fourier transforms, whih we laimare not as natural a representation in ases like NVO. Interms of unit ell Fourier transforms the eigenvalue on-ditions for 2x ating on the spine sites (#1-#4) are thesame as Eq. (24) for atual position Fourier transformsbeause the operation 2x does not hange the unit ell.However, for the glide operation mz this is not the ase.If we start from site #1 or site #2 the translation alongthe y axis takes the spin to a �nal unit ell displaedby (�a=2)̂i+ (b=2)ĵ, whereas if we start from site #3 orsite #4 the translation along the y axis takes the spinto a �nal unit ell displaed by (a=2)̂i + (b=2)ĵ. Nowthe eigenvalue onditions for mz ating on the spine sites(#1-#4) areS�(q; 1)0 = ��(mz)S�(q; 4)� = �(mz)S�(q; 1)S�(q; 4)0 = ��(mz)S�(q; 1)�� = �(mz)S�(q; 4)S�(q; 2)0 = ��(mz)S�(q; 3)� = �(mz)S�(q; 2)S�(q; 3)0 = ��(mz)S�(q; 2)�� = �(mz)S�(q; 3) ;(29)where � = exp(i�q). One �nds that all entries forS(q; s3), S(q; s4), and S(q; 2) now arry the phase fa-tor �� = exp(�i�q). But this is just the fator to makethe unit ell resultS(R; � ) = S(q; � )e�iq�R (30)



7be the same (to within an overall phase fator) as theatual position resultS(R; � ) = S(q; � )e�iq�(R+� ) : (31)We should emphasize that in suh a simple ase as NVO,it is atually not neessary to invoke any group theo-retial onepts to arrive at the results of Table III forthe most general spin distribution onsistent with rystalsymmetry.More importantly, it is not ommonly understood20{22that one an also extrat information using the sym-metry of an operation (inversion) whih does not on-serve wavevetor.3{7,23,25 Sine what we are about to saymay be unfamiliar, we start from �rst priniples. Thequadrati free energy may be written asF2 = Xq X�;� 0;�� F �� 0�� S�(q; �)�S�(q; � 0) ; (32)where we restrit the sum over wavevetors to the star ofthe wavevetor of interest. One term of this sum isF2(q0) = X�;� 0;�� F �� 0�� S�(q0; �)�S�(q0; � 0) : (33)It should be lear that the quadrati free energy, F2 isinvariant under all the symmetry operations of the para-magneti spae group (i. e. what one alls the spaegroup of the rystal).26,31 For entrosymmetri rystalsthere are three lasses of suh symmetry operations. The�rst lass onsists of those operations whih leave q0 in-variant and these are the symmetries taken into aountin the usual formulation.20{22 The seond lass onsistsof operations whih take q0 into another wavevetor ofthe star (all it q1), where q1 6= �q0. Use of these sym-metries allows one to ompletely haraterize the wave-funtion at wavevetor q1 in terms of the wavefuntionfor q0. These relations are needed if one is to disussthe possibility of simultaneously ondensing more thanone wavevetor in the star of q.28,40 Finally, the thirdlass onsists of spatial inversion (unless the wavevetorand its negative di�er by a reiproal lattie vetor, inwhih ase inversion belongs in lass #1). The role of in-version symmetry is almost universally overlooked,20{22as is evident from examination of a number of reentpapers. Unlike the operations of lass #1 whih takesSn(q) into an Sn0(q) (for irreps of dimension one whihis true for most ases onsidered in this paper), inver-sion takes Sn(q) into an Sn0(�q). Nevertheless it doestake the free energy written in Eq. (33) into itself andrestrits the possible form of the wavefuntions. So wenow onsider the onsequenes of invariane of F2 underinversion.3{7 For this purpose we write Eq. (13) in termsof the spin oordinates n of Table III. (The result will, ofourse, depend on whih symmetry label � we onsider.)In any ase, the part of F2 whih depends on q0 an bewritten asF2(q0) = X�;� 0;�� F �� 0�� S�(q0; �)�S�(q0; � 0)

= XN;�;N 0;�;�GN;�;N 0;� [n�N(�)℄�[n�N 0(�)℄ ;(34)where N and N 0 assume the values "s" for spin and ""for ross-tie and � and � label omponents, and the sumsover N and � (and similarly N 0 and �) are over the n()variables needed to speify the wavefuntion assoiatedwith the symmetry label (irrep) �. From now on wekeep only the terms belonging to the irrep whih is ativeand for notational simpliity we leave the orrespondingargument � of n impliit. Then we see that invarianeunder inversion implies thatF2(q) = XN;�;N 0;�GN;�;N 0;�[n�N ℄�n�N 0= XN;�;N 0;�GN;�;N 0;�[In�N ℄�[In�N 0 ℄ : (35)Now we need to understand the e�et of I on the spinFourier oeÆients listed in Table III. Sine we use atualposition Fourier oeÆients, we apply Eq. (21). Forthe ross-tie variables (whih sit at a enter of inversionsymmetry) inversion takes the spin oordinates of onespine sublattie into the omplex onjugate of itself:IS(q; n) = [S(q; n)℄� : (36)Thus in terms of the n's this givesIn� = [n� ℄� ; � = x; y; z : (37)The e�et of inversion on the spine variables again fol-lows from Eq. (21). Sine inversion interhanges sublat-tie #1 and #3, we have[S(q; s3)℄0 = [S(q; s1)℄� : (38)For �(2x) = �(mz) = +1 (i. e. for irrep �1), we substi-tute the values of the spin vetors from the �rst olumnof Table III to getI[�nas ℄ = [nas ℄� ; I[nbs℄ = [nbs℄� ;I[�ns℄ = [ns℄� : (39)Note that some omponents introdue a fator �1 underinversion and others do not. (Whih ones have the minussigns depends on whih irrep we onsider.) If we make ahange of variable by replaing n�s in olumn #1 of TableIII by i~n�s for those omponents for whih I introduesa minus sign and replaing the other n�s by ~n�s , then wemay rewrite the �rst olumn of Table III in the formgiven in Table IV. We replae all the ross tie variablesn�x by ~n�x . In terms of these new tilde variables one hasI[~n�s ℄ = [~n�s ℄� : (40)(It is onvenient to de�ne the spin Fourier oeÆientsso that they all transform in the same way under inver-sion. Otherwise one would have to keep trak of variables



8Irrep= �1 �2 �3 �4�(2x) = +1 +1 �1 �1�(mz) = +1 �1 �1 +1S(q; s1) inasnbsins nasinbsns inasnbsins nasinbsnsS(q; s2) inas�nbs�ins nas�inbs�ns �inasnbsins �nasinbsnsS(q; s3) �inasnbs�ins nas�inbsns �inasnbs�ins nas�inbsnsS(q; s4) �inas�nbsins nasinbs�ns inasnbs�ins �nas�inbsnsS(q; 1) na00 na00 0nbn 0nbnS(q; 2) �na00 na00 0nb�n 0�nbnTABLE IV: As Table III (for NVO) exept that now the e�etof inversion symmetry is taken into aount, as a result ofwhih, apart from an overall phase fator all the n's in thistable an be taken to be real-valued.whih transform with a plus sign and those whih trans-form with a minus sign.) Repeating this proess for allthe other irreps we write the possible spin funtions asthose of Table IV. We give an expliit formula for thespin distribution for one irrep in Eq. (48) below.Now we implement Eq. (35), where the spin funtionsare taken to be the variables listed in Table IV. Firstnote that the matrix G in Eq. (35) has to be Hermitianto ensure that F2 be real:GM;�;N;� = [GN;�;M;�℄� : (41)Then, using Eq. (40), we �nd that Eq. (35) isF2(q0) = XM;�;N;�[~n�M ℄�GM;�;N;�~n�N= XM;�;N;�[I~n�M ℄�GM;�;N;�[I~n�N ℄= XM;�;N;� ~n�MGM;�;N;�[~n�N ℄�= XM;�;N;�[~n�M ℄�GN;�;M;�[~n�N ℄ ; (42)where, in the last line, we interhanged the roles of thedummy indies M;� and N; �. By omparing the �rstand last lines, one sees that the matrix G is symmetri.Sine this matrix is also Hermitian, all its elements mustbe real valued. Thus all its eigenvetors an be takento have only real-valued omponents. But the m's are

allowed to be omplex valued. So, the onlusion is thatfor eah irrep, we may write~n�N (�) = ei�� [r�N (�)℄ ; (43)where the r's are all real valued and �� is an overall phasewhih an be hosen arbitrarily for eah �. When onlya single irrep is ative, it is likely that the phase will be�xed by high-order Umklapp terms in the free energy,but the e�ets of suh phase loking may be beyond therange of experiments.41It is worth noting how these results should be (and ina few ases3,4,6 have been) used in the struture determi-nations. One should hoose the best �t to the di�rationdata using, in turn, eah irrep (i. e. eah set of eigenval-ues of 2x and mz). Within eah irrep one parametrizesthe spin struture by hoosing the Fourier oeÆients asin the relevant olumn of Table IV. Note that insteadof having 4 or 5 omplex oeÆients to desribe the sixsites within the unit ell (see Table III), one has only 4or 5 (depending on the representation) real-valued oeÆ-ients to determine. The relative phases of the omplexoeÆients have all been �xed by invoking inversion sym-metry. This is learly a signi�ant step in inreasing thepreision of the determination of the magneti struturefrom experimental data.B. Order ParametersWe now review how the above symmetry lassi�ationinuenes the introdution of order parameters whih al-low the onstrution of Landau expansions.4,6 The formof the order parameter should be suh that it has the po-tential to desribe all ordering whih are allowed by thequadrati free energy F2. Thus, for an isotropi Heisen-berg model on a ubi lattie, the order parameter hasthree omponents (i. e. it involves a three dimensionalirrep) beause although the fourth order terms will re-strit order to our only along ertain diretions, as faras the quadrati terms are onerned, all diretions areequivalent. The analogy here is that the overall phaseof the spin funtion �(�) is not �xed by the quadratifree energy and aordingly the order parameter mustbe a omplex variable whih inludes suh a phase. Onealso reognizes that although the amplitude of the ritialeigenvetor is not �xed by the quadrati terms in the freeenergy, the ratios of its omponents are �xed by the spe-i� form of the inverse suseptibility matrix. Althoughwe do not wish to disuss the expliit form of this matrix,what should be lear is that the omponents of the spinswhih order must be proportional to the omponents ofthe ritial eigenvetor. The atual amplitude of the spinordering is determined by the ompetition between thequadrati and fourth order terms in the free energy. If �pis the irrep whih is ritial, then just below the orderingtemperature we write~n�N (q) = �p(q)r�N (�p) ; (44)



9where the r's are real omponents of the ritial eigenve-tor (assoiated with the ritial eigenvalue of irrep �p) ofthe matrix G of Eq. (35) and are now normalized byX�N [r�N ℄2 = 1 : (45)Here the order parameter for irrep �(q), �p(q) is a om-plex variable, sine it has to inorporate the arbitraryomplex phase �p assoiated with irrep �p:�p(�jqj) = �pe�i�p : (46)The order parameter transforms as indiated in the tablesby its listed eigenvalues under the symmetry operations2x andmz. Sine the omponents of the ritial eigenve-tor are dominantly determined by the quadrati terms,42one an say that just below the ordering temperature thedesription in terms of an order parameter ontinues tohold but �p � jT � T j�p ; (47)where mean-�eld theory gives � = 1=2 but orretionsdue to utuation are expeted.43To summarize and illustrate the use of Table IV wewrite an expliit expression for the magnetizations ofthe #1 spine sublattie and the #1 ross-tie sublat-tie assuming te ative irrep to be �4 [�(2x) = �1 and�(mz) = +1℄. We use the de�nition of the order param-eter and sum over both signs of the wavevetor to getSx(r; s1) = 2�4rxs os(qx+ �4)Sy(r; s1) = 2�4rys sin(qx+ �4)Sz(r; s1) = 2�4rzs os(qx+ �4)Sx(r; s2) = �2�4rxs os(qx+ �4)Sy(r; s2) = 2�4rys sin(qx+ �4)Sz(r; s2) = 2�4rzs os(qx+ �4)Sx(r; s3) = 2�4rxs os(qx+ �4)Sy(r; s3) = �2�4rys sin(qx+ �4)Sz(r; s3) = 2�4rzs os(qx+ �4)Sx(r; s4) = �2�4rxs os(qx+ �4)Sy(r; s4) = �2�4rys sin(qx+ �4)Sz(r; s4) = 2�4rzs os(qx+ �4)Sx(r; 1) = 0Sy(r; 1) = 2�4ry os(qx + �4)Sz(r; 1) = 2�4rz os(qx+ �4)Sx(r; 1) = 0Sy(r; 2) = �2�4ry os(qx+ �4)Sz(r; 2) = 2�4rz os(qx+ �4) (48)and similarly for the other irreps. (The observed mag-neti strutures are desribed qualitatiely in the aptionto Fig. 2. The atual values of the struture parametersr�x in Eq. (48) and its analog for irrep �1 are given in Ref.

6.) Here r � (x; y; z) is the atual loation of the spin.Using expliit expressions like the above (or more diretlyfrom Table IV), one an verify that the order parameters(�p for irrep �p) have the transformation properties:2x�1(q) = +�1(q) ; mz�1(q) = +�1(q) ;2x�2(q) = +�2(q) ; mz�2(q) = ��2(q) ;2x�3(q) = ��3(q) ; mz�3(q) = ��3(q) ;2x�4(q) = ��4(q) ; mz�4(q) = +�4(q) (49)and I�n(q) = [�n(q)℄�: (50)Note that even when more than a single irrep is present,the introdution of order parameters, as done here, pro-vides a framework within whih one an represent thespin distribution as a linear ombination of distributionseah having a harateristi symmetry, as expressed byEq. (49). When the struture of the unit ell is ignored16that information is not readily aessible. Also note thatthe phase of eah irrep �n is de�ned so that when �n = 0,the wave is inversion-symmetri about r = 0. When �nis nonzero, it is possible to invoke the inommensurabil-ity to �nd a lattie site whih is arbitrarily lose to aenter of inversion symmetry of the mathematial spinfuntion. Thus eah irrep has a enter of inversion sym-metry whose loation is impliitly de�ned by the value of�n. When only a single irrep is ative, the spei�ationof �n is not important. However, when one has two ir-reps, then inversion symmetry is only maintained if theenters of inversion symmetry of the two irreps oinide,i. e. if their phases are equal.In many systems, the initial inommensurate orderthat �rst ours as the temperature is lowered beomesunstable as the temperature is further lowered.30 Typi-ally, the initial order involves spins oriented along theireasy axis with sinusoidally varying magnitude. How-ever, the fourth order terms in the Landau expansion(whih we have not written expliitly) favor �xed lengthspins. As the temperature is lowered the �xed lengthonstraint beomes progressively more important and ata seond, lower, ritial temperature a transition oursin whih transverse omponents beome nonzero. Al-though the situation is more ompliated when there areseveral spins per unit ell, the result is similar: the �xedlength onstraint is best realized when more than a singleirrep has ondensed. So, for NVO and TMO as the tem-perature is lowered one enounters a seond phase transi-tion in whih a seond irrep appears. Within a low-orderLandau expansion this phenomenon is desribed by a freeenergy of the form6F = 12(T � T>)�2> + 12(T � T<)�2< + u>�4>+u<�4< + w�2>�2< ; (51)where T> > T<. This system has been studied in de-tail by Brue and Aharony.44 For our purposes, the most



10Er = (x; y; z) myr = (x; y; z + 12 )Ir = (x; y; z) 2yr = (x; y; z + 12 )TABLE V: General Positions for spae group P2/.important result is that for suitable values of the param-eters ordering in �> ours at T> and at a lower temper-ature (when T �T<+2w�2> = 0) order in �< may our.The appliation of this theory to the present situationis simple: we an (and usually do) have two magnetiphase transitions in whih �rst one irrep and then at alower temperature a seond irrep ondense. A questionarises as to whether the ondensation of one irrep anindue the ondensation of a seond irrep. This is notpossible beause the two irreps have di�erent symmetry.But ould the presene of two irreps, �> and �< induethe appearane of a third irrep �3 at the temperature atwhih �< �rst appears? For that to happen would re-quire that �n> 
�m< 
 �3 ontain the unit representationfor some values of n and m. This or any higher om-bination of representations is not allowed for the simplefour irreps system like NVO. In more omplex systemsone might have to allow for suh a phenomenon.III. APPLICATIONSIn this setion we apply the above formalism to a num-ber of multiferrois of urrent interest.A. MnWO4MnWO4 (MWO) rystallizes in the spae group P2/(#14 in Ref. 33) whose general positions are given inTable V. The two magneti Mn ions per unit ell are atpositions� 1 = (12 ; y; 14) ; � 2 = (12 ; 1� y; 34) : (52)The wavevetor of inommensurate magneti orderingis45 q = (qx; 1=2; qz) with qx � �0:21 and qz � 0:46)and is left invariant by the identity and my. We start byonstruting the eigenvetors of the quadrati free energy(i. e. the inverse suseptibility matrix). Here we use unitell Fourier transforms to failitate omparison with Ref.45. BelowX , Y , and Z denote integers (in units of lattieonstants). WhenRf + � f = (X;Y; Z) + � 1= (X + 12 ; Y + y; Z + 14) (53)and Ri + � i = [my℄�1(Rf + � f )

Irrep �1 �2�(my) = ei�qz �ei�qzS(q; 1) a�nxa�nya�nz a�nxa�nya�nzS(q; 2) anx�anyanz �anxany�anzTABLE VI: Allowed spin eigenfuntions for MWO (apartfrom an overall phase fator) before inversion symmetry istaken into aount, where a = exp(�i�qz=2). Here the n(q)'sare omplex and we have taken the liberty to adjust the overallphase to give a symmetrial looking result. But these resultsare equivalent to Table II of Ref. 45.= (X + 12 ;�Y � y; Z 14 )= (X;�Y � 1; Z � 1) + � 2 : (54)Then Eq. (19) gives the eigenvalue ondition to beS0�(q; �1) = ��(my)S�(q; � 2)e2�iq�[(2Y+1)ĵ+k̂℄= ��(my)S�(q; �2)e�i+2�iqz= �S�(q; �1) ; (55)where �x(my) = ��y(my) = �z(my) = �1. WhenRf + � f = (X;Y; Z) + � 2= (X + 12 ; Y + 1� y; Z + 34) ; (56)then Ri + � i = (X + 12 ;�Y � 1� y; Z + 14)= (X;�Y � 1; Z) + � 1 ; (57)and Eq. (19) gives the eigenvalue ondition to beS0�(q; �2) = ��(my)S�(q; � 1)e2�iq�(2Y+1)ĵ= ��(my)S�(q; �1)[�1℄ = �S�(q; �2) :(58)From Eqs. (55) and (58) we get � = �ei�qz andS�(q; �2) = �[��(my)=�℄S�(q; �1) : (59)So we get the results listed in Table VI.So far the analysis is essentially the ompletely stan-dard one. Now we use the fat that the free energy isinvariant under spatial inversion, even though that oper-ation does not onserve wavevetor.3,4,6,7 We now deter-mine the e�et of inversion on the n's. As will beomeapparent use of unit ell Fourier transforms makes thisanalysis more ompliated than if we had used atualposition transforms. We use Eq. (22) to writeIS(q; � = 1) = S(q; � = 2)�e�2�iq�(̂i+ĵ+k̂)� bS(q; 2)� ; (60)



11where b = � exp[�2�i(qx + qz)℄. For �2 we getI[nx; ny; nz℄ = [�nx; ny;�nz℄�b ; (61)whih we an write asIn� = b��(my)n�� : (62)Now the free energy is quadrati in the Fourier spin oef-�ients, whih are linearly related to the n's. So the freeenergy an be written asF2 = nyGn ; (63)where n = (nx; ny; nz) is a olumn vetor andG is a 3�3matrix whih we write asG = 264 A � ��� B �� � C 375 ; (64)where, for Hermitiity the Roman letters are real andthe Greek ones omplex. Now we use the fat that alsowe must have invariane with respet to inversion, whihafter all is a rystal symmetry. ThusF2 = [In℄yG[In℄ : (65)This an be written asF2 = X�� b��(my)n�G��b�a���(my)n��= X�� ��(my)n�G����(my)n�� : (66)Thus we may writeF2 = ntr 264 A �� ���� B ��� �� C 375n�= ny 264 A ��� ���� B ��� � C 375n ; (67)where "tr" indiates transpose (so ntr is a row vetor).Sine the two expressions for F2, Eqs. (63) and (67),must be equal we see that � = ia, � = b, and  = i,where a, b, and  must be real. Thus G is of the formG = 264 A ia b�ia B ib �i C 375 ; (68)where all the letters are real. This means that the ritialeigenvetor desribing the long range order has to be ofthe form (nx; ny; nz) = ei�(r; is; t) ; (69)

Irrep �1 �2�(my) = ei�qz �ei�qzS(q; 1) a�ria�sa�t �ia�ra�s�ia�tS(q; 2) ar�iasat iarasiatTABLE VII: As Table VI (for TMO), exept that here in-version symmetry is taken into aount. Here r, s, and t arereal. All six omponents an be multiplied by an overall phasefator whih we have not expliitly written.where r, s, and t are real. For �2 we set ei� = �i. For �1a similar alulation again yields Eq. (69), but here weset ei� = 1. (These hoies are not essential. They justmake the symmetry more obvious.) Thus we obtain the�nal results given in Table VII. Lautenshlager et al45say (just above Table II) \Depending on the hoie of theamplitudes and phases ..." What we see here is that in-version symmetry �xes the phases without the possibilityof a hoie (just as it did for NVO). Note again that wehave about half the variables to �x in a struture deter-mination when we take advantage of inversion invarianeto �x the phase of the omplex struture onstants.1. Order ParameterNow we disuss the de�nition of the order parameterfor this system. For this purpose we replae r by �r, sby �s. et., with the normalization thatr2 + s2 + t2 = 1 : (70)Here the order parameter � is omplex beause we al-ways have the freedom to multiply the wavefuntion bya phase fator. (This phase fator might be \loked" byhigher order terms in the free energy, but we do not on-sider that phenomenon here.46) We reord the symmetryproperties of the order parameter. With our hoie ofphases we have I�n(q) = [�n(q)℄� ;my�n(q) = �(�n)�n(q)my�n(�q) = �(�n)��n(�q) ; (71)where �n(q) is the omplex-valued order parameter forordering of irrep �n and �(�n) is the eigenvalue of mygiven in Table VII. Now we write an expliit formula forthe spin distribution in terms of the order parameters ofthe two irreps:S(R; � = 1) = 2�1 h(r1 î+ t1k̂) os(q �R+ �1 � �qz=2)



12Er = (x; y; z) 2xr = (x+ 12 ; y + 12 ; z)2z = (x; y; z + 12 ) 2y = (x+ 12 ; y + 12 ; z + 12 )Ir = (x; y; z) mxr = (x+ 12 ; y + 12 ; z)mzr = (x; y; z + 12 ) myr = (x+ 12 ; y + 12 ; z + 12 )TABLE VIII: General Positions for Pbnm. Notation as inTable I.Mn (1) = (0; 12 ; 0) (2) = ( 12 ; 0; 0)(3) = (0; 12 ; 12 ) (4) = ( 12 ; 0; 12 )Tb (5) = (x; y; 14 ) (6) = (x+ 12 ; y + 12 ; 34 )(7) = (x; y; 34 ) (8) = (x+ 12 ; y + 12 ; 14 )TABLE IX: Positions of the Magneti Ions in the Pbnm Stru-ture of TbMnO3, with x = 0:9836 and y = 0:0810.47+s1ĵ sin(q �R+ �1 � �qz=2)i+2�2 h(�r2 î� t2k̂) sin(q �R+ �2 � �qz=2)+s2ĵ os(q �R+ �2 � �qz=2)i ; (72)S(R; � = 2) = 2�1 h(r1 î+ t1k̂) os(q �R+ �1 + �qz=2)� s1ĵ sin(q �R+ �1 + �qz=2)i+2�2 h(r2 î+ t2k̂) sin(q �R+ �2 + �qz=2)+s2ĵ os(q �R+ �2 + �qz=2)i : (73)One an expliitly verify that these expressions are on-sistent with Eq. (71). Note that when only one of theorder parameters (say �n) is nonzero, we have inver-sion symmetry with respet to a rede�ned origin where�n = 0. For eah irrep we have to speify three realparameters, �rn, �sn, and �tn and one overall phase �nrather than three omplex-valued parameters had we notinvoked inversion symmetry.B. TbMnO3Here we give the full details of the alulations forTbMnO3 desribed in Ref. 3. The presentation heredi�ers osmetially from that in Ref. 5. The spae groupof TbMnO3 is Pbnm whih is #62 in Ref. 33 (althoughthe positions are listed there for the Pnma setting). Thespae group operations for a general Wyko� orbit isgiven in Table VIII. In Table IX we list the positionsof the Mn and Tb ions within the unit ell and these arealso shown in Fig. 4. The phase diagram for magneti�elds up to 14T along the a axs is shown in Fig. 5.
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FIG. 4: (Color online). Mn sites (smaller irles, on-line red)and Tb sites (larger irles, on-line blue) in the primitive unitell of TbMnO3. The Tb sites are in the shaded planes atz = n� 14 and the Mn sites are in planes z = n or z = n+ 12 ,where n is an integer. The inommensurate wavevetor isalong the b axis. The mirror plane at z = 1=4 is indiatedand the glide plane mx is indiated by the mirror plane atx = 3=4 followed by a translation (indiated by the arrow) ofb=2 along the y-axis.To start we study the operations that leave invariantthe wavevetor of the inommensurate phase whih �rstorders as the temperature is lowered. Experimentally49this wavevetor is found to be (0; q; 0), with39 q � 0:28.These relevant operators (see Table VIII) mx and mz.We follow the approah used for MWO, but use \atualloation" Fourier transforms. We set Rf + � f � r inorder to use Eq. (17) and we need to evaluate� � exp�2�iq � [r� [mx℄�1r�= exp�2�iqĵ � [yĵ � [mx℄�1yĵ℄� = ei�q (74)and �0 � exp�2�iq � [r� [mz℄�1r℄�= exp�2�qĵ � [yĵ � [mz ℄�1yĵ℄� = 1 : (75)We list, in Table X the transformation table of sublattieindies of TMO.Therefore the eigenvalue ondition for transformationby mx isS0�(q; �f ) = ��(mx)S�(q; �i)� = �(mx)S�(q; �f )(76)and that for transformation by z isS0�(q; �f ) = ��(mz)S�(q; �i) = �(mz)S�(q; �f ) ;(77)
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FIG. 5: Shemati phase diagram for TMO for magneti �eldsup to 14T applied along the a diretion, taken from Ref. 48.Here P is the paramagneti phase, HTI is the \high tem-perature" inommensurate phase in whih3 the moments areessentially aligned along the b axis with a sinusoidally mod-ulated amplitude aording to irrep �3 and LTI is the \lowtemperature" inommensurate phase in whih3 transverse or-der along the  axis appears to make an elliptially polarizedorder parameter wave aording to irreps �3 and �2. A spon-taneous polarization P appears only in the LTI phase with Palong the axis for low magneti �eld.3�i �f (mx) �f (mz) �f (I)1 2 3 12 1 4 23 4 1 34 3 2 45 8 5 76 7 6 87 6 7 58 5 8 6TABLE X: Transformation table for sublattie indies ofTMO under various operations.where �x(mx) = ��y(mx) = ��z(mx) = 1 and ��(mz)was de�ned in Eq. (16). From these equations we seethat �(mx) assumes the values �� and �(mz) the values�1. Then solving the above equations leads to the resultsgiven in Table XI. (These results look di�erent thanthose in Ref. 3 beause here the Fourier transforms arede�ned relative to the atual positions, whereas in Ref.3 there they are de�ned relative to the origin of the unitell.)Now, sine the rystal is entrosymmetri, we takesymmetry with respet to spatial inversion, I, into a-ount. As before, reall that I transports the spin to itsspatially inverted position without hanging the orienta-tion of the spin (a pseudovetor). The hange of positionis equivalent to hanging the sign of the wavevetor in theFourier transform and this is aomplished by omplexonjugation. Sine the Mn ions sit at enters of inversion

Irrep �1 �2 �3 �4�(mx) = +� �� �� +��(mz) = +1 �1 +1 �1S(q;M1) naM�nbM�nM �naMnbMnM �naMnbMnM naM�nbM�nMS(q;M2) naMnbMnM naMnbMnM naMnbMnM naMnbMnMS(q;M3) �naMnbM�ns �naMnbM�nM naM�nbMnM naM�nbMnMS(q;M4) �naM�nbMnM naMnbM�nM �naM�nbMnM naMnbM�nMS(q; T1) 00nT1 naT1nbT10 00nT1 naT1nbT10S(q; T2) 00�nT2 �naT2nbT20 00nT2 naT2�nbT20S(q; T3) 00nT2 naT2nbT20 00nT2 naT2nbT20S(q; T4) 00�nT1 �naT1nbT10 00nT1 naT1�nbT10TABLE XI: Spin funtions (i. e. atual position Fourier o-eÆients) within the unit ell of TMO for wavevetor (0; q; 0)whih are eigenvetors of mx and mz with the eigenvalueslisted, with � = exp(i�q). All the parameters are omplex-valued. The irreduible representation (irrep) is labeled as inRef. 3. Inversion symmetry is not yet taken into aount.Note that the two Tb orbits, (T1-T4) and (T2-T3), have in-dependent omplex amplitudes.symmetry, one has, for the Mn sublatties,IS(q; n) = S(q; n)� ; (78)where the seond argument spei�es the sublattie, asin Table IX. In order to disuss the symmetry of theoordinates we de�ne x1 = naM , x2 = nbM , x3 = nM andfor irreps �1 and �3, x4 = nT1 and x5 = nT2, whereasfor irreps �2 and �4, x4 = naT1, x5 = naT2, x6 = nbT1, andx7 = nbT2. Thus Eq. (78) givesIxn = x�n ; n = 1; 2; 3 : (79)For the Tb ions I interhanges sublatties #5 and #7and interhanges sublatties #6 and #8. So we haveIS(q; 5) = S(q; 7)�IS(q; 6) = S(q; 8)� : (80)Therefore we haveIx4 = x�5 ; Ix6 = x�7 : (81)



14Now we use the invariane of the free energy under Ito write F2 = XX;�;Y;� S�(q; X)�FnmS�(q; Y )= Xm;nx�nGnmxm= Xm;n[Ix�n℄Gnm[Ixm℄ ; (82)where the matrix G is Hermitian and we have impliitlylimited onsideration to whihever irrep is ative.For irreps �1 and �3 the matrix G in Eq. (82) ou-ples �ve variables, x1 : : : x5. Equation (79) implies thatthe upper left 3� 3 submatrix of G (whih involves thevariables x1 : : : x3) is real. Equations (79) and (81) implythat Gn;4 = G5;n for n = 1; 2; 3. We thus �nd that Gassumes the formG = 2666664 a b  � ��b d e � �� e f  ��� �� � g Æ� �  Æ� g
3777775 ; (83)where the Roman letters are real valued and the Greekare omplex valued. As shown in the appendix, the formof this matrix ensures that the ritial eigenvetor an betaken to be of the form = (naM ; nbM ; nM ; nT1; nT1�) � (r; s; t; �; ��) ; (84)where the Roman letters are real and the Greek onesomplex. Of ourse, beause the vetor an be omplex,we should inlude an overall phase fator (whih amountsto arbitrarily plaing the origin of the inommensuratestruture), so that more generally = ei�(r; s; t; �; ��) : (85)For irreps �2 and �4 the matrix G in Eq. (82) ouplesthe seven variables, x1 : : : x7 listed just above Eq. (79).Equations (79) and (81) imply that Gn;4 = G5;n andGn;6 = G7;n for n = 1; 2; 3. Also Eq. (81) implies similarrelations within the lower right 4�4 submatrix involvingthe variables x4 : : : x7. Therefore G assumes the form

G = 266666666664
a b  � �� � ��b d e � �� � �� e f  � � ���� �� � g Æ � �� �  Æ� g �� ���� �� �� �� � h �� � � �� � �� h

377777777775 ; (86)
where Roman letters are real and Greek are omplex.As shown in the appendix, this form ensures that the

Irrep �1 �2 �3 �4�(mx) = +� �� �� +��(mz) = +1 �1 +1 �1S(q;M1) r�s�t �rst �rst r�s�tS(q;M2) rst rst rst rstS(q;M3) �rs�t �rs�t r�st r�stS(q;M4) �r�st rs�t �r�st rs�tS(q; T1) 00� ��0 00� ��0S(q; T2) 00��� �����0 00�� �����0S(q; T3) 00�� ����0 00�� ����0S(q; T4) 00�� ���0 00� ���0TABLE XII: As Table XI. Apart from an overall phase ��for eah irrep, inversion symmetry restrits all the manganeseFourier oeÆients to be real and all the Tb oeÆients tohave the indiated phase relations.eigenvetors are of the form = (naM ; nbM ; nM ; naT1; naT2;mbT1; nbT2)= ei�(r; s; t; �; ��; �; ��) : (87)These results are summarized in Table XII. Note thatthe use of inversion symmetry �xes most of the phasesand relates the amplitudes of the two Tb orbits, therebyeliminating almost half the �tting parameters.31. Order ParametersWe now introdue order parameters �n(q) � �nei�nfor irrep �n in terms of whih we an write the spin dis-tribution. For instane under �3 one hasSx(r;M1) = �2r�3 os(qy + �3)Sy(r;M1) = 2s�3 os(qy + �3)Sz(r;M1) = 2t�3 os(qy + �3)Sx(r;M2) = 2r�3 os(qy + �3)Sy(r;M2) = 2s�3 os(qy + �3)Sz(r;M2) = 2t�3 os(qy + �3)Sx(r; T1) = Sy(r; T1) = 0



15Sz(r; T1) = 2��3 os(qy + �3 + ��)Sx(r; T2) = Sy(r; T2) = 0Sz(r; T2) = 2��3 os(qy + �3 � ��) ; (88)where we set � = �ei�� and the parameters are normal-ized by r2 + s2 + t2 + j�j2 = 1 : (89)In Eq. (88) r � (x; y; z) is the atual position of the spinin question. From Table XI one an obtain the symmetryproperties of the order parameters for eah irrep. Forinstanemx�1(q) = +��1(q) ; mz�1(q) = +�1(q)mx�2(q) = ���2(q) ; mz�2(q) = ��2(q)mx�3(q) = ���3(q) ; mz�3(q) = �3(q)mx�4(q) = +��4(q) ; mz�4(q) = ��4(q)(90)and I�n(q) = ��n(q) : (91)Note that in ontrast to the ase of NVO, inversionsymmetry does not �x all the phases. However, itagain drastially redues the number of possible mag-neti struture parameters whih have to be determined.In partiular, it is only by using inversion that one �ndsthat the magnitudes of the Fourier oeÆients of the twodistint Tb sites have to be the same. Note that if wehoose the origin so that � = 0 (whih amounts to re-naming the origin so that that beomes true), then wereover inversion symmetry (taking aount that inver-sion interhanges terbium sublattie #3 and #1). Onean determine that the spin struture is inversion invari-ant when one ondenses a single representation.The experimentally determined struture of the HTIand LTI phases is desribed in the aption to Fig. 5 andnumerial values of the struture parameters are given inRef. 3.The result of Table XII applies other manganatesprovided their wavevetor is also of the form (0; qy; 0).This inludes DMO,9 YMnO350 and HoMnO3.51,52 Boththese systems order into an inommensurate strutureat about T � 42K. The Y ompound has a seondlower-temperature inommensurate phase, whereas theHo ompound has a lower-temperature ommensuratephase. C. TbMn2O5The spae group of TbMn2O5 (TMO25) is Pbam (#55in Ref. 33) and its general positions are listed in TableXIII. The positions of the magneti ions are given inTable XIV and are shown in Fig. 6.We will address the situation just below the orderingtemperature of 43K.55 We take the ordering waveve-tor to be55 to be ( 12 ; 0; q) with q � 0:306. (This may

Er = (x; y; z) 2xr = (x+ 12 ; y + 12 ; z)2z = (x; y; z) 2y = (x+ 12 ; y + 12 ; z)Ir = (x; y; z) mxr = (x+ 12 ; y + 12 ; z)mzr = (x; y; z) myr = (x+ 12 ; y + 12 ; z)TABLE XIII: As Table XIII. General Positions for Pbam.Mn3+ (1) = (x; y; 0) (2) = (x; y; 0)(3)(x+ 12 ; y + 12 ; 0) (4) = (x+ 12 ; y + 12 ; 0)Mn4+ (5) = ( 12 ; 0; z) (6) = (0; 12 ; z)(7) = ( 12 ; 0; z) (8) = (0; 12 ; z)RE (9) = (X;Y; 12 ) (10) = (X;Y ; 12 )(11) = (X + 12 ; Y + 12 ; 12 ) (12) = (X + 12 ; Y + 12 ; 12 )TABLE XIV: Positions of the magneti ions of TbMn2O5 inthe Pbam struture. Here x = 0:09, y = �0:15, z = 0:25,53X = 0:14, and Y = 0:17.54 . All these values are taken fromthe isostrutural ompound HoMn2O5.be an approximate value.56) (The following alulationinvolves a great deal of algebra whih may be skipped.The expliit result for the spin struture is given in Eq.(123).) Initially we assume that the possible spin on�g-urations onsistent with a ontinuous transition at suh awavevetor are eigenvetors of the operators mx and mywhih leave the wavevetor invariant. We proeed as forTMO. We use the unit ell Fourier transforms and writethe eigenvetor onditions for transformation by mx asS�(q; �f )0 = ��(mx)S�(q; �i)eiq(rf�Ri) = �xS�(q; �f ) ;(92)where �i and Ri are respetively the sublattie indiesand unit ell loations before transformation and �f andRf are those after transformation. The eigenvalue equa-tion for transformation by my isS�(q; �f )0 = ��(my)S�(q; �i)eiq(rf�Ri) = �yS�(q; �f ) :(93)If one attempts to onstrut spin funtions whih aresimultaneously eigenfuntions of mx and my one �ndsthat these equations yield no solution. While it is, ofourse, true that the operations mx and my take aneigenfuntion into an eigenfuntion, it is only for irrepsof dimension one that the initial and �nal eigenfun-tions are the same, as we have assumed. The presentase, when the wavevetor is at the edge of the Bril-louin zone is analogous to the phenomenon of \stiking"where, for nonsymmorphi spae group (i. e. those hav-ing a srew axis or a glide plane) the energy bands (orphonon spetra) have an almost mysterious degenerayat the zone boundary57 and the only ative irrep has di-mension two. This means that the symmetry operationsindue transformations within the subspae of pairs ofeigenfuntions. We now determine suh pairs of eigen-funtions by a straightforward approah whih does not
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FIG. 6: (Color online). Two representations of TbMn2O5.Top: Mn sites (on-line red) with smaller irles Mn3+ andlarger irles 4+ and Tb sites (squares, on-line blue) in theprimitive unit ell of TbMn2O5. The Mn+4 sites are in theshaded planes at z = n� Æ with Æ � 0:25 and the Mn+3 sitesare in planes z = n, where n is an integer. The Tb ions are inthe planes z = n+ 12 . The glide plane mx is indiated by themirror plane at x = 3=4 followed by a translation (indiatedby the arrow) of b=2 along the y-axis and similarly for theglide plane my. Bottom: Perspetive view. Here the Mn3+are inside oxygen pyramids of small balls and the Mn4+ areinside oxygen otahedra.require any knowledge of group theory. Here we expli-itly onsider the symmetries of the matrix ��1 for thequadrati terms in the free energy whih here is a 36�36dimensional matrix, whih we write as��1 = 264 M(xx) M(xy) M(xz)M(xy)y M(yy) M(yz)M(zx)y M(yz)y M(zz) 375 ; (94)

ni mx may mxmay Ib mxmyInf nf ei� nf ei� nf ei�0 nf1 3 4 1 2 1 2 1 12 4 3 1 1 1 1 1 23 1 2 �1 4 �1 4 �1 34 2 1 �1 3 �1 3 �1 45 6 6 �1 5 �1 7 �1 76 5 5 1 6 1 8 1 87 8 8 �1 7 �1 5 �1 58 7 7 1 8 1 6 1 69 11 12 1 10 1 10 1 910 12 11 1 9 1 9 1 1011 9 10 �1 12 �1 12 �1 1112 10 9 �1 11 �1 11 �1 12TABLE XV: Transformation table for sublattie indies withassoiated fators for TMO25 under various operations. asde�ned by Eq. (20). For mx, one has exp[iq � (Rf �Ri)℄ =1 for all ases and for mxmyI the analogous fator is +1in all ases and this operator relates S�(q; �) and S�(q; �)�.NOTE: This table does not inlude the fator of ��(O) whihmay be assoiated with an operation.a) � = q � (Rf �Ri), as required by Eq. (19).b) �0 = q � (� i + � f ), as required by Eq. (22).where M(ab) is a 12 dimensional submatrix whih de-sribes oupling between a-omponent and b-omponentspins and is indexed by sublattie indies � and � 0 Thesymmetries we invoke are operations of the srew axes,mx and my whih onserve wavevetor (to within a re-iproal lattie vetor), and I, whose e�et is usuallyignored. To guide the reader through the ensuing al-ulation we summarize the main steps. We �rst ana-lyze separately the setors involving the x, y, and z spinomponents. We develop a unitary transformation whihtakesM(��) into a matrix all of whose elements are real.This �xes the phases within the 12 dimensional spaeof the � spin omponents within the unit ell (assumingthese relations are not invalidated by the form ofM(��),with � 6= �). The relative phases between di�erent spinomponents is �xed by showing that the unitary transfor-mation introdued above leads to M(xy) having all real-valued matrix elements and M(xz) and M(yz) having allpurely imaginary matrix elements. The onlusion, then,is that the phases in the setors of x and y omponentsare oupled in phase and the setor of z omponents areout of phase with the x and y omponents.1. x ComponentsAs a preliminary, in Table XV we list the e�et ofthe symmetry operations on the sublattie index. Whenthese symmetries are used, one �nds the 12 � 12 sub-matrix ofM(xx) whih ouples only the x-omponents of



17spins assumes the form26666666666666664
A g h 0 � � �� �� a b  dg A 0 �h �� � ��� �� b a �d �h 0 A g � � �� ��  d a b0 �h g A � �� �� ��� �d � b a�� ��� �� �� B 0 � 0  � Æ Æ�� �� �� ��� 0 B 0 � Æ Æ  �� �� � � �� 0 B 0 � �� Æ� Æ�� � � �� 0 �� 0 B Æ� Æ� � ��a b  �d � Æ�  Æ C e f 0b a d � �� Æ� � Æ e C 0 �f �d a b Æ� � Æ  f 0 C ed � b a Æ� �� Æ � 0 �f e C

37777777777777775 ;(95)
where Roman letters are real quantities and Greek onesomplex. (In this matrix the lines are used to separatedi�erent Wyko� orbits.) The numbering of the rows andolumns follows from Table XIV. I give a few examplesof how symmetry is used to get this form. Consider theterm T1, whereT1 = ��11;5Sx(�q; 1)Sx(q; 5) : (96)Using Table XV we transform this by mx intoT 01 = ��11;5Sx(�q; 3)Sx(q; 6) ; (97)whih says that the 1,5 matrix element is equal to the3,6 matrix element. (Note that in writing down T 01 wedid not need to worry about ��, sine this fator omesin squared as unity.) Likewise if we transform by my weget T 01 = ��115 [�Sx(�q; 4)℄[Sx(q; 6)℄ ; (98)whih says that the 1,5 matrix element is equal to thenegative of the 4,6 matrix element. If we transform bymxmy we getT 01 = ��11;5[Sx(�q; 2)℄[�Sx(q; 5)℄ ; (99)whih says that the 1,5 matrix element is equal to thenegative of the 2,5 matrix element. To illustrate the e�etof I on T1 we writeT 01 = ��11;5[Sx(q; 2)℄[�Sx(�q; 7)℄ ; (100)so that the 1,5 element is the negative of the 7,2 element.From the form of the matrix in Eq. (95) (or equivalentlyreferring to Table XXIII in Appendix B), we see that webring this matrix into blok diagonal form by introduingthe wavefuntions for Sx(q; �),� = 1 2 3 4 5 6 7 8 9 10 11 12p2O(x;1)1;� = 1 0 1 0 0 0 0 0 0 0 0 0p2O(x;1)2;� = 0 1 0 1 0 0 0 0 0 0 0 02O(x;1)3;� = 0 0 0 0 1 1 1 1 0 0 0 02O(x;1)4;� = 0 0 0 0 i i �i �i 0 0 0 0p2O(x;1)5;� = 0 0 0 0 0 0 0 0 1 0 1 0p2O(x;1)6;� = 0 0 0 0 0 0 0 0 0 1 0 1 : (101)

The supersripts �; n onO label, respetively, the Carte-sian omponent and the olumn of the irrep aord-ing to whih the wavefuntion transforms. The sub-sripts m; � label, respetively, the index number of thewavefuntion and the sublattie label. Let O�;np be avetor with omponents O�;np;1 , O�;np;2 , ... O�;np;12. ThenhO(x;1)n jM (xx)jO(x;1)m i � hnjM (xx)jmi is266664 A+ h g �0 + �0 ��00 � �00 a+  b + dg A� h �0 � �0 �00 � �00 b� d a� �0 + �0 �0 � �0 B + �0 �" Æ0 + 0 Æ0 � 0��00 � �00 �00 � �00 �00 B � �0 Æ00 + 00 Æ00 � 00a+  b� d Æ0 + 0 Æ00 + 00 C + f eb + d a�  Æ0 � 0 Æ00 � 00 e C � f 377775 ;(102)where the oeÆients are separated into real and imag-inary parts as p2� = �0 + i�00, p2� = �0 + i�00p2 = 0 + i00, and p2Æ = Æ0 + iÆ00. There are nononzero matrix elements between wavefuntions whihtransform aording to di�erent olumns of the irrep.The partners of these funtions an be found fromO(x;2)n = myO(x;1)n ; (103)so that, using Table XV and inluding the fator ��, weget � = 1 2 3 4 5 6 7 8 9 10 11 12p2O(x;2)1;� = 0 1 0 �1 0 0 0 0 0 0 0 0p2O(x;2)2;� = 1 0 �1 0 0 0 0 0 0 0 0 02O(x;2)3;� = 0 0 0 0 �1 1 �1 1 0 0 0 02O(x;2)4;� = 0 0 0 0 �i i i �i 0 0 0 0p2O(x;2)5;� = 0 0 0 0 0 0 0 0 0 1 0 �1p2O(x;2)6;� = 0 0 0 0 0 0 0 0 1 0 �1 0 :(104)Within this subspae the matrix hnjM (xx)jmi is the sameas in Eq. (102) beausehnjm�1y M (xx)myjmi = hnjM (xx)jmi : (105)These funtions transform as expeted for a two di-mensional irrep, namely,mx " O(x;1)nO(x;2)n # = " O(x;1)n�O(x;2)n #my " O(x;1)nO(x;2)n # = " O(x;2)n�O(x;1)n # : (106)We will refer to the transformed oordinates of Eqs.(101) and (104) as \symmetry adapted oordinates."The fat that the model-spei� matrix that ouplesthem is real, means that the ritial eigenvetor is a lin-ear ombination of symmetry adapted oordinates withreal oeÆients. 2. y ComponentsThe 12 � 12 matrix M (yy) oupling y omponents ofspin has exatly the same form as that given in Eq. (95),



18although the values of the onstants are unrelated. Thisis beause here one has �2y = 1 in plae of �2x = 1. There-fore the assoiated wavefuntions an be expressed justas in Eqs. (101) and (104) exept that all the supersriptsare hanged from x to y and � now labels Sy(q; �). How-ever, the transformation of the y omponents rather thanthe x omponents, requires replaing �x by �y whih in-dues sign hanges, so thatmx " O(y;1)nO(y;2)n # = " �O(y;1)nO(y;2)n #my " O(y;1)nO(y;2)n # = " �O(y;2)nO(y;1)n # : (107)We want to onstrut wavefuntions in this setor whihtransform just like the x omponents, so that they anbe appropriately ombined with the wavefuntions forthe x-omponents. In view of Eq. (106) we setO(y;1)n;� = O(x;2)n;� ; O(y;2)n;� = O(x;1)n;� : (108)So the oeÆients for O(y;1)n are given by Eq. (104) andthose for O(y;2)n by Eq. (101). These wavefuntions areonstruted to transform exatly as those for the x om-ponents. 3. z ComponentsSimilarly, we onsider the e�et of the transformationsof the z omponents. In this ase we take aount of thefator �z to getmx " O(z;1)nO(z;2)n # = " �O(z;1)nO(z;2)n #my " O(z;1)nO(z;2)n # = " O(z;2)n�O(z;1)n # : (109)We now onstrut wavefuntions in this setor whihtransform just like the x omponents. In view of Eq.(106) we setO(z;1)n;� = O(x;2)n;� ; O(z;2)n;� = �O(x;1)n;� ; (110)So the oeÆients for O(z;1)n are given by Eq. (104)and those for O(z;2)n are the negatives of those of Eq.(101). These wavefuntions are onstruted to transformexatly as those for the x omponents.4. The Total Wavefuntion and Order ParametersNow we analyze the form ofM(ab) of Eq. (94) for a 6= b,using inversion symmetry. To do this it is onvenient to

invoke invariane under the symmetry operation mxmyIwhose e�et is given in Table XV. We writemxmyISa(q; �) = �a(mx)�a(my)�Sa(q;R�)� ; (111)where R� = � for � 6= 5; 6; 7; 8, otherwise R� = � � 2within the remaining setor of � 's and a (and later b)denotes one of x, y, and z. ThusT � Sa(q; �)�M (ab)�� 0 Sb(q; � 0)= [mxmyISa(q; �)℄�M (ab)�� 0 [mxmyISb(q; � 0)℄= CabSa(q;R�)M (ab)�� 0 Sb(q;R� 0)� ; (112)where Cab = �a(mx)�a(my)�b(mx)�b(my) : (113)From the last line of Eq. (112) we dedue thatM (ba)R� 0;R� = CabM (ab)�� 0 ; (114)or, sineM is Hermitian thatM (ab)�� 0 = Cab hM (ab)R�1�;R�1� 0i� : (115)Now we onsider the matries M(ab), in the symmetryadapted representation whereM (ab)n;m = X�� 0 [Oapn� ℄�M (ab)�� 0 Obpm� 0= X�� 0 Cab[Oapn� ℄� hM (ab)R�1�;R�1� 0i�Obpm� 0= CabX�� 0 [OapnR� ℄� hM (ab)�;� 0 i�ObpmR� 0 : (116)There are no matrix elements onneting p and p0 6= pand the result is independent of p. One an verify fromEqs. (101) and (104) thatOapn;R� = �Oapn;� �� ; (117)so that M (ab)n;m = Cab�[Oapn� ℄�M (ab)�;� 0 Obpm� 0��= Cab �Mabnm�� : (118)We have that Cxy = �Cxz = �Cyz = 1, so that all theelements ofM(xy) are real and all the elements ofM(xz)and M(yz) are imaginary. Thus apart from an over allphase for the eigenfuntion of eah olumn, the phases ofall the Fourier oeÆients are �xed. What this means isthat the ritial eigenvetor an be written as = 2Xp=1�p 6Xn=1 rnxO(x;p)n + rnyO(y;p)n+irnzO(z;p)n ! ; (119)



19Spin �1 �2 Spin �1 �2S(q; 1) r1xr1yir1z r2xr2yir2z S(q; 7) z�x�z�yiz�z �z�xz�yiz�zS(q; 2) r2xr2y�ir2z r1xr1y�ir1z S(q; 8) z�xz�y�iz�z z�xz�yiz�zS(q; 3) r1x�r1y�ir1z �r2xr2yir2z S(q; 9) r5xr5yir5z r6xr6yir6zS(q; 4) r2x�r2yir2z �r1xr1y�ir1z S(q; 10) r6xr6y�ir6z r5xr5y�ir5zS(q; 5) zx�zyizz �zxzyizz S(q; 11) r5x�r5y�ir5z �r6xr6yir6zS(q; 6) zxzy�izz zxzyizz S(q; 12) r6x�r6yir6z �r5xr5y�ir5zTABLE XVI: Normalized spin funtions (i. e. Fourier o-eÆients) within the unit ell of TbMn2O5 for wavevetor( 12 ; 0; q). Here z� = (r3� + ir4�)=p2. All the r's are realvariables. The wavefuntion listed under �1 (�2) transformsaording to the �rst (seond) olumn of the irrep. The a-tual spin struture is a linear ombination of the two olumnswith arbitrary omplex oeÆients.where the r's are all real-valued and are normalized by6Xn=1X� [rn�℄2 = 1 ; (120)and �p are arbitrary omplex numbers. Thus we havethe result of Table XVI.The order parameters are�1 � �1e�i�1 ; �2 � �2e�i�2 : (121)Neither the relative magnitudes of �1 and �2 nor theirphases are �xed by the quadrati terms within the Lan-dau expansion. Note that the struture parameters of Ta-ble XVI are determined by the mirosopi interationswhih determine the matrix elements in the quadratifree energy. (Sine these are usually not well known, onehas reourse to a symmetry analysis.) The diretion in�1-�2 spae whih the system assumes, is determined byfourth or higher-order terms in the Landau expansion.Sine not muh is known about these terms, this dire-tion is reasonably treated as a parameter to be extratedfrom the experimental data. We use Table XVI to writethe most general spin funtions onsistent with rystalsymmetry. For instane we writeS(R; 1) = 12�1[r1xî+ r1y ĵ + ir1zk̂℄e�iq�R + : :

+ 12�2[r2x î+ r2y ĵ + ir2zk̂℄e�iq�R + : : :(122)Using this and similar equations for the other sublattieswe �nd thatS(R; 1) = �1 h(r1xî+ r1y ĵ) os(q �R+ �1)+r1zk̂ sin(q �R+ �1)i+�2 h(r2x î+ r2y ĵ℄ os(q �R+ �2)+r2zk̂ sin(q �R+ �2)iS(R; 2) = �1 h(r2xî+ r2y ĵ) os(q �R+ �1)�r2zk̂ sin(q �R+ �1)i+�2 h(r1x î+ r1y ĵ℄ os(q �R+ �2)�r1zk̂ sin(q �R+ �2)iS(R; 3) = �1 h(r1xî� r1y ĵ) os(q �R+ �1)�r1zk̂ sin(q �R+ �1)i+�2 h(�r2xî+ r2y ĵ℄ os(q �R+ �2)+r2zk̂ sin(q �R+ �2)iS(R; 4) = �1 h(r2xî� r2y ĵ) os(q �R+ �1)+r2zk̂ sin(q �R+ �1)i+�2 h(�r1xî+ r1y ĵ℄ os(q �R+ �2)�r1zk̂ sin(q �R+ �2)iS(R; 5) = �1 h(z0xî� z0y ĵ � z00z k̂) os(q �R+ �1)+(z00x î� z00y ĵ + z0zk̂) sin(q �R+ �1)i+�2 h(�z0xî+ z0y ĵ � z00z k̂℄ os(q �R+ �2)+(�z00x î+ z00y ĵ + z0zk̂) sin(q �R+ �2)iS(R6) = �1 h(z0xî+ z0y ĵ + z00z k̂) os(q �R+ �1)+(z00x î+ z00y ĵi� z0zk̂) sin(q �R+ �1)i+�2 h(z0xî+ z0yĵ � z00z k̂℄ os(q �R+ �2)+(z00x î+ z00y ĵ + z0zk̂) sin(q �R+ �2)iS(R; 7) = �1 h(z0xî� z0y ĵ + z00z k̂) os(q �R+ �1)+(�z00x î+ z00y ĵ + z0zk̂) sin(q �R+ �1)i+�2 h(�z0xî+ zy ĵ + z00z k̂℄ os(q �R+ �2)+(z00x î� z00y ĵ + z0zk̂) sin(q �R+ �2)i



20S(R8) = �1 h(z0xî+ z0yĵ � z00z k̂) os(q �R+ �1)+(�z00x î� z00y ĵ � z0zk̂) sin(q �R+ �1)i+�2 h(z0xî+ zyĵ + z00z k̂℄ os(q �R+ �2)+(�z00x î� z00y ĵ + z0zk̂) sin(q �R+ �2)iS(R; 9) = �1 h(r5x î+ r5y ĵ) os(q �R+ �1)+r5zk̂ sin(q �R+ �1)i+�2 h(r6x î+ r6y ĵ℄ os(q �R+ �2)+r6zk̂ sin(q �R+ �2)iS(R; 10) = �1 h(r6x î+ r6y ĵ) os(q �R+ �1)�r6zk̂ sin(q �R+ �1)i+�2 h(r5x î+ r5y ĵ℄ os(q �R+ �2)�r5zk̂ sin(q �R+ �2)iS(R; 11) = �1 h(r5x î� r5y ĵ) os(q �R+ �1)�r5zk̂ sin(q �R+ �1)i+�2 h(�r6xî+ r6y ĵ℄ os(q �R+ �2)+r6zk̂ sin(q �R+ �2)iS(R; 12) = �1 h(r6x î� r6y ĵ) os(q �R+ �1)+r6zk̂ sin(q �R+ �1)i+�2 h(�r5xî+ r5y ĵ℄ os(q �R+ �2)�r5zk̂ sin(q �R+ �2)i (123)In Table XVI the position of eah spin is R+ �n, wherethe � are listed in Table XIV and R is a Bravais lattievetor. The symmetry properties of the order parametersare mx " �1�2 # = " �1��2 #my " �1�2 # = " �2��1 #I " �1�2 # = " ��2��1 # : (124)We now hek a few representative ases of the abovetransformation. If we apply mx to S(q; 1) we do nothange the signs of the x omponent but do hange thesigns of the y and z omponents. As a result we getS(q; 3) exept that �y has hanged sign, in agreement

with the �rst line of Eq. (124). If we apply my to S(q; 1)we do not hange the sign of the y omponent but dohange the signs of the x and z omponents. As a resultwe get S(q; 4) exept that now �1 is replaed by �2 and�2 is replaed by �1, in agreement with the seond lineof Eq. (124). When inversion is applied to S(q; 1) wehange the sign of R but not the orientation of the spinswhih are pseudovetors. We then obtain S(q; 2) provid-ing we replae �1 by ��2 and �2 by ��1, in agreement withthe last line of Eq. (124).5. Comparison to Group TheoryHere I briey ompare the above alulation to the oneusing the standard formulation of representation theory.The �rst step in the standard formulation is to �nd theirreps of the group of the wavevetor. The easiest wayto do this is to introdue a double group having eightelements (see Appendix B) sine we need to take aountof the operatorm2y � �E. (This is done in Appendix B.)From this one �nds that eahWyko� orbit and eah spinomponent an be onsidered separately (sine they donot transform into one another under the operations weonsider). Then, in every ase the only irrep that appearsis the two dimensional one for whih we setmx = " 1 00 -1 # my = " 0 1-1 0 # mxmy = " 0 11 0 # :(125)Indeed, one an verify that the funtions in the se-ond (third) olumn of Table XVI omprise a basis ve-tor for olumn one (two) of this two dimensional irrep.One might ask: \Why have we undertaken the ugly de-tailed onsideration of the matrix for F2?" The point isthat within standard representation theory all the vari-ables in Table XVI would be independently assigned ar-bitrary phases. In addition, the amplitudes for the Tb or-bits (sublatties #5, #6 and sublatties #7, #8) wouldhave independent amplitudes. To get the results atuallyshown in Table XVI one would have to do the equivalentof analyzing the e�et of inversion invariane of the freeenergy. This task would be a very tehnial exerise inthe arane aspets of group theory whih here we avoidby an exerise in algebra, whih though messy, is ba-sially high shool math. I also warn the reader thatanned programs to perform the standard representationanalysis an not always be relied upon to be orret. It isworth noting that published papers dealing with TMO25have not invoked inversion symmetry. For instane inRef. 55 one sees the statement \As in the inommensu-rate ase[3℄, eah of the magneti atoms in the unit ell isallowed to have an independent SDW, i. e., its own am-plitude and phase," and later on in Ref. 56 \all phaseswere subsequently �xed ... to be rational frations of �."Use of the present theory would eliminate most of thephases and would relate the two distint Mn4+ Wyko�orbits (just as happened for TMO).



21Finally, to see the e�et of inversion on a onrete levelI onsider the upper right and lower left 4�4 submatriesof M(xx), whih are denoted Mur and Mll, respetively.If we do not use inversion symmetry (this amounts tofollowing the usual group theoretial formulation) thesematries assume the formMur = 26664 a b  db a �d � d a b�d � b a 37775 ;Mll = 26664 a� b� � �d�b� a� d� ��� �d� a� b�d� �� b� a� 37775 ; (126)where now all these parameters are omplex valued. (Pre-viously, in Eq. (95) all these parameters were real-valued.) From these results one ould again introduethe wavefuntions of Eq. (101). However, in this ase,the matrix elements appearing in the analog of Eq. (102)would not be real. In fat, Eq. (126) indiates in Eq.(102) the quantities a, b, , and d in the upper right se-tor of the matrix would be omplex and those in the lowerleft setor would be replaed by their omplex onjugates(to ensure Hermitiity). Thus invoking inversion symme-try does not hange the symmetry adapted oordinatesof Eq. (101). Rather it �xes the phases so that the resultan be expressed in terms of real-valued parameters, aswe have done in Table XVI.6. Comparison to YMn2O5YMn2O5 (YMO25) is isostrutural to TM025, so itsmagneti struture is relevant to the present disussion.I will onsider the highest temperature magnetially or-dered phase, whih appears between about 20K and 45K.In this ompound Y is nonmagneti and in the higher-temperature ordered phase qz = 1=4, so the system isommensurate. But sine the value of qz is not speial,the symmetry of this state is essentially the same as thatof TMO25. Throughout this subsetion the struturalinformation is taken from Fig. 2 of Ref. 58. (The up-permost panel is mislabeled and is obviously the one wewant for the highest temperature ordered phase.)From Fig. 7 we see that the spin wavefuntion is aneigenvetor of mx with eigenvalue �1. So this struturemust be that of the seond olumn of the irrep. In aor-dane with this identi�ation one sees that the initialwavefuntion is orthogonal to the wavefuntion trans-formed by my (sine this transformation will produe awavefuntion assoiated with the �rst olumn). Refer-ring to Eq. (123), one sees that to desribe the patternof Mn3+ spins one hooses�1 = 0 ; r2x = �r1x � 0:95 ;r1y = �r2y � 0:3 : (127)
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FIG. 7: (Color online). Top: The spin struture of the Mn3+ions in YMn2O5 (limited to one a-b pane), taken from Fig.2 of Ref. 58. The sublatties are labeled in our onvention.Bottom left: the spin struture of after transformation bymx.Bottom right: spin struture of TbMn2O5 after transforma-tion by my.The point we make here is that �1 = 0. Although thevalues of these order parameters were not given in Ref.58, it seems lear that in the lower temperature phasethe order parameters must be omparable in magnitude.D. CuFeO2The magneti phase diagram of CuFeO2 has been in-vestigated ontinually over the last deade or so. Earlystudies59,60 showed a rih phase diagram and these om-bined with magneto-eletri data10 led to the phase dia-gram for magneti �elds up to about 15T given in Ref.10 whih is reprodued in Fig. 8.Above TN2 � 10K, the rystal struture is thatof spae group of R3m61 (#166 in Ref. 33). Be-low that temperature there is apparently a very smalllattie distortion whih gives rise to a lower symme-try rystal struture.62,63 However, sine this distortionmay not be essential to explaining the appearane offerroeletriity,64 we will ignore the presene of this lat-tie distortion. The general positions of ions within spaegroup R3m is given in Table XVII.Our analysis is based on the following logi referredto the phase diagram of Fig. 8. We assume that asthe temperature is lowered in a magneti �eld of about10T, the ontinuous transition from the paramagnetiphase to the ollinear inommensurate (CIC) phase intro-dues a single irrep whih we will identify by our simplemethod. Then further lowering of the temperature willintrodue a seond irrep, taking us into the nonollinearinommensurate (NIC) phase whose symmetry and fer-roeletriity we wish to disuss. Both these phases areharaterized by an inommensurate wavevetor along ahexagonal < 110 > diretion, whih is the diretion to anearest neighbor in the triangular lattie plane, as shown
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FIG. 8: (Color online) Temperature (T ) versus magneti �eld(B) phase diagram of CuFeO2 with B applied along the axis from Kimura et al.10 The upper inset shows the rystalstruture of CuFeO2 and the lower insets show the magnetistruture of the ommensurate states, where white and blakirles orrespond to the positive and negative  diretions.Note in the lower left inset that the hexagonal < 110 > dire-tion (along whih q is oriented) is a nearest neighbor diretion.Er = (x; y; z) 3r = (z; x; y) 32r = (y; z; x)m3r = (y; x; z) m2r = (z; y; x) m1r = (x; z; y)Ir = (x; y; z) I3r = (z; x; y) I32r = (y; z; x)Im3r = (y; x; z) Im2r = (z; y; x) Im1r = (x; z; y)TABLE XVII: General Positions for R3m, with respet torhombohedral axes, an, where a1 = �(a=2)̂i� (ap3=6)ĵ+ k̂,a2 = (a=2)̂i� (ap3=6)ĵ + k̂, a3 = (ap3=3)ĵ + k̂, where  isthe distane between neighbors planes of Fe ions and a is theseparation between nearest neighbors in the plane. Here "3"denotes a three-fold rotation and mn labels the three mirrorplanes whih ontain the three-fold axis and an.in Fig. 8. As mentioned, although in priniple the lat-tie distortion does break the three-fold symmetry, wewill assume that the three states whih are related bythe three-fold rotation have only slightly di�erent ener-gies in the distorted struture and our arguments haveto be understood in that sense.We assume the R3m spae group and are interestedin strutures assoiated with a wavevetor in the starof q1 �< q; q; 0 > (referred to hexagonal axes). Thesewavevetors are parallel to a nearest neighbor vetors ofthe triangular plane of Fe ions. Consider the wavevetor

q1 � qî. The only operation (other than the identity)that onserves wavevetor is 2x a two-fold rotation aboutthe axis of the wavevetor. Clearly the Fourier ompo-nent mx(q) obeys2xmx(q1) = �(2x)mx(q1) (128)with �(2x) = 1. and we all this irrep �1. For irrep �2we have 2xmy(q1) = �(2x)my(q1)2xmz(q1) = �(2x)mz(q1) ; (129)but with �(2x) = �1. So far, the phases of the omplexFourier oeÆients are not �xed. We have the transfor-mation properties2x�1(q1) = �1(q1) ; 2x�2(q1) = ��2(q1)I�1(q1) = [�1(q1)℄� ; I�2(q1) = [�2(q1)℄� :(130)To �x the phases in irrep �2 we note that its quadratifree energy an be expressed asF2 = Ajmy(q1)j2 +Bjmz(q1)j2 + Cmy(q1)�mz(q1)+C�mz(q1)�my(q1) ; (131)where A and B are real and C is omplex. Using the fatthat F2 must be invariant under I, we writeF2 = Ajmy(q1)j2 +Bjmz(q1)j2 + Cmz(q1)mz(q1)�+C�mz(q1)my(q1)� : (132)Comparing this with Eq. (131) we onlude that C hasto be real. Sine the m's an be omplex, this means thatthe two omponents of the eigenvetor of the quadratiform [i. e. my(q1) and mz(q1)℄ have to have the sameomplex phase.We now introdue order parameters whih desribe themagnitude and phase of these two symmetry labels (ir-reps) whih make up the wavefuntion. When both irrepsare present, one hasmx(q1) = �1(q1) (133)and my(q1) = �2(q1)r ; mz(q1) = �2(q1)s ; (134)where r2 + s2 = 1 and �n(�jqkj) = �ne�i�n . (Notethat the phases �n are �xed by the fourth order termsin the free energy to be the same for all members of thestar of the wavevetor.) Thus, when both irreps (of q1)are present, we have (rede�ning the order parameters toremove a fator of 2)mx(r) = �1(q1) os(qx + �1)my(r) = �2(q1)r os(qx+ �2)mz(r) = �2(q1)s os(qx+ �2) ; (135)where q = jq1j.



23We apply these results as follows. As one lowers thetemperature from the paramagneti phase we assumethat we �rst enter the CIC whih has the spins pre-dominantly along the z-axis. Therefore, in this phasewe assume that only irrep �2 is ative. Notie that inthis phase the spins will not lie exatly along the z-axis.Indeed, reent work65 indiates that this phase is one inwhih the amplitudes are sinusoidally modulated and thespins are oriented in the y�z plane (as desribed by irrep�2) with my=mz (i. e. r=s) between 0 and about 0.2.Lowering the temperature still further leads to the NICphase in whih both irreps �2 and �1 are ative. Theliterature seems to be rather unertain as to the atualstruture of this phase. However, one possibility, seem-ingly not mentioned up to now, is that appliation of amagneti �eld to the ollinear-ommensurate (1/4) state,ould essentially give rise to a spin-op transition so thatthe spins, instead of being aligned along the hexagonal axis, would rotate to being nearly perpendiular to the axis. This observation would suggest that if we ignorethe lattie distortion, we would expet to have an in-ommensurate state with the spins elliptially polarizedin a plane nearly (but not exatly) perpendiular to thehexagonal  axis. Suh a state is onsistent with Eq.(135) providing j�2 � �1j = �=2. It does have to be ad-mitted that the spin-op �eld �eld of about 10T is ratherlarge for an L = 0 ion like Fe3+ whose anisotropy ouldbe expeted to be small.So far we have onsidered only two of the vetors q1and �q1, of the star of the wavevetor. However, theLandau expansion should treat all wavevetors in the starsymmetrially, sine at quadrati order the system anequally well ondense into any of the wavevetors of thestar. So we write the quadrati free energy F2 asF2 = 3Xn=1�a1(H;T )j�1(qn)j2 + a2(H;T )j�2(qn)j2� :(136)When the temperature is lowered at a magneti �eld ofabout 10T along the z axis, the oeÆient a2(H;T ) �rstpasses through zero and only one of the order parameters�2(qn) beomes nonzero. At lower temperature a1(H;T )passes through zero and one enters a phase in whih both�1(qn) and �2(qn) beome nonzero. Within Landau the-ory, it is possible to realize a phase in whih two or threenonollinear wavevetors simultaneously beome unsta-ble. However, sine suh \double q" or \triple q" statesare not realized for CFO, we will not analyze this possibil-ity further than to say that the fourth order terms mustbe suh as to stabilize states having a single wavevetor.The ferroeletri phase of interest is one in whih�1(qn) and �2(qn) are nonzero for a single value of n.(The value of n represents a broken symmetry.) For fu-ture referene we note that at zero applied eletri andmagneti �elds the free energy must be invariant un-der taking either �1 or �2 into its negative. Finally,we reord how order parameters orresponding to di�er-ent wavevetors of the star are related by the three-fold

Spae group G1 G2 G3P3m1 R I 2xP3 R ITABLE XVIII: Generators Gn of rotational symmetry forthe symmorphi spae groups of RFMO. Here R is a rotationthrough 2�=3 about the positive  axis and 2x is a two foldrotation about the a axis, as in Fig. 9.rotation, 3:3�n(q1) = �n(q2) ; 32�n(q1) = �n(q3) : (137)However, the spins distribution orresponding to theseorder parameters of the other wavevetors are the rotatedversion of the spin struture, so that if we onsider theordering wavevetor q2 we havemx(r) = �[�1(q2)=2℄ os(�qx=2� qyp3=2 + �1)�[p3�2(q2)r=2℄ os(�qx� qyp3=2 + �2)my(r) = �[�2(q)r=2℄(�qx=2� qyp3=2 + �2)+[p3�1(q2)=2℄(�qx=2� qyp3=2 + �1)mz(r) = �2(q2)s os(�qx=2� qyp3=2 + �2) : (138)To summarize: representation theory usefully restritsthe possibly spin strutures one an obtain via one ormore ontinuous phase transitions. Reognition of thisfat might have saved a lot of experimental e�ort in de-termining the spin strutures of CuFeO2.E. RbFe(MoO4)2In this setion we elaborate on a briefer presenta-tion of the symmetry analysis given previously8 forRbFe(MoO4)2 (RFMO). This symmetry analysis is on-sistent with the mirosopi model of interation pro-posed by Gasparovi.66 RFMO onsists of two dimen-sional triangular lattie layers of Fe spin 5/2 ions (per-pendiular to the rystal  axis) suh that adjaent lay-ers are staked diretly over one another. These layers ofmagneti ions are separated by oxygen tetrahedra whihsurround an Mo ion. At room temperature the rystalstruture is P3m1 (# 164 in Ref. 33), but at 180K asmall lattie distortion leads to the lower symmetry P3(# 147 in Ref. 33) struture,66 whose general lattie po-sitions are spei�ed in Table XVIII, and the struture isshown in Fig. 9. The low-temperature struture di�ersfrom that above T = 180K by not having the two-foldrotation about the rystal a axis. As we will explain,this loss of symmetry has important onsequenes for themagneti struture.66We now disuss the magneti struture of RFMO.A shemati We now disuss the magneti struture ofRFMO. A shemati magneti phase diagram for mag-neti �elds of up to about 10T along the  axis is show
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FIG. 9: (Color online). The unit ell of RFMO in the P3phase. The large balls (online pink) represent the magnetiFe ions, the small balls (online blue) oxygen ions, and eahtetrahedron (online green) ontains a Mo ion. For larity theRb ion (whih sits between the two tetrahedra) is not shown.The in-plane antiferromagneti interation J is dominant. Inthe high-temperature P3m1 phase J3 = J4 but in the preseneof the lattie distortion to the P3 phase J3 6= J4.66
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FIG. 10: A shemati phase diagram of RFMO for magneti�elds of up to about 10T along the  axis, based on Refs. 8,66{69 Here P is the paramagneti phase, IC-TRI is an inommen-surate phase desribed in the text in whih eah plane on-sists of the so-alled 120o triangular lattie struture. CAFis a ommensurate antiferromagnet phase, and ICAF an in-ommensurate antiferromagneti phase, neither of whih aredisussed in the present paper. We omit referene to subtlephase distintions disussed in Refs. 67 and 68.in Fig. 10. The magneti anisotropy is suh that allthe spins lie in the basal plane perpendiular to the axis. The dominant interations responsible for longrange magneti order are antiferromagneti interationsbetween nearest neighbors in a given basal plane whihgive rise to the the so-alled 120o struture, shown inFig. 11 in whih the angle between all nearest neighbor-ing spins in a basal plane is 120o.67,68
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FIG. 11: (Color online) The 120o phase of a triangular lattie.The orientations of the spins are given by the phase  (r),de�ned in Eq. (156), below, for qzz+� = 0. The dashed linesindiate the two-dimensional unit ell. The plus and minussigns indiate whether the oxygen tetrahedron losest to theenter of the triangle is above (plus) or below (minus) theplane of the paper.
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FIG. 12: (Color online). Helial spin struture of RFMO. Asone moves from one triangular lattie plane to the next thespins are rotated through an angle 166o.8,66Here we will be mainly interested in the properties ofthe phase whih ours for magneti �elds of less thanabout 3T. Neutron di�ration8,66 on�rms that in thisphase eah triangular layer orders into a phase in whihthe angle between the diretion of adjaent spins is 120o.Neutron di�ration8,66 also indiated that from one tri-angular layer to the next the spins are rotated throughan angle �� = 166o,8,66 as shown in Fig. 12. This phaselaks inversion symmetry and is ferroeletri.8 In thatreferene the order parameters whih desribe the mag-neti ordering are disussed and we give the analysis inmore detail here.
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FIG. 13: (Color online). The �rst Brillouin zone (thehexagon) and the reiproal lattie (the dots) for a triangularlattie. The points labeled X1 are all equivalent and simi-larly for the points labeled X2. Here jXnj = 4�=(p3a). Thereiproal lattie is rotated by 30o with respet to the diretlattie. In reiproal lattie units X2 = (1=3; 1=3; 0).We now disuss the wavevetors whih generate thismagneti struture. The 120o magneti struture of a tri-angular lattie is generated by wavevetors at the ornersof the two-dimensional Brillouin zone, whih is shown inFig. 13. Note that the orners of the zone labeled Xnhaving the same n are equivalent to one another beausethey di�er by a vetor of the reiproal lattie. How-ever X1 and X2, although the negatives of one another,are distint. The inommensurate low �eld phase is thusharaterized by the wavevetorsQn � Xn + qz k̂ ; (139)where the omponent of wavevetor along  desribes thetwisting of the spins as one moves along the  axis via�� = qz, where  is the interlayer separation. It islear that for either of the two relevant spae groups theonly operation (other than the identity) that onserveswavevetor is R. The Fourier oeÆients of the spin willbe eigenvetors of R with eigenvalue �(R) and we listthese in Table XIX.Irrep �1 �2 �3�(R) 1 � �2Sx 0 S? S?Sy 0 �iS? iS?Sz Sk 0 0TABLE XIX: Complex-valued Fourier omponents S(q) forthe various irreps. Here � = e2�i=3.

The Fourier amplitude S(q) is de�ned byS(r) = S(q)e�iq�r : (140)The allowed omplex-valued Fourier amplitudes S(q) foreah irrep are given in Table XIX. We now verify theresults given in Table XIX. To do this we need to knowwhat e�et the three-fold rotation R has on the FourieroeÆient S(q). Let primes denote the value of quantitiesafter transformation by R and unprimed quantities thequantities before transformation. We writeS0(r0) = S0(q)e�iq�r0 : (141)Thus, if we an determine how S(r)and r transform intoS0(r0) and r0, respetively, we an use this relation to inferhow S(q) transforms. For this disussion we introduethe notation thatRS rotates only the spin andRr rotatesonly the position, so thatR = RSRr : (142)Note that after transformation the spin at r0 will be therotated version of the spin that was at r. ThereforeS0(r0) = RSS(r) = [RSS(q)℄e�iq�r : (143)But q � r = q � [R�1r r0℄ = [Rrq℄ � r0 = q � r0 : (144)Here we used the fat that under Rr the X-point (seeFig. 13) goes into a point equivalent to itself. ThusS0(r0) = [RSS(q)℄e�iq�r0 : (145)Comparison with Eq. (141) then yieldsS0(q) = RSS(q) ; (146)whih we write asS0x(q)S0y(q) = " � 12 �p32p32 � 12 # Sx(q)Sy(q) : (147)We now an hek the result in Table XIX. IfS(q) = (S?;�iS?) ; (148)Then Eq. (147) givesS0(q) = �(S?;�iS?) � �S(q) ; (149)where � = exp(2�i=3).1. Order ParametersWe now desribe the spin strutures orresponding tothe various irreps. The distribution funtion for spin de-pends on the irrep, �2 or �3, on whih X-point is hosen,



26and on the value of the z-omponent of wavevetor, Sothe possible distributions areS(2)(X1; qz; r) = R?e�i(X1�rk+qzz��)(̂i� iĵ)+: : ; (150)S(3)(X1; qz; r) = R?e�i(X1�rk+qzz��)(̂i+ iĵ)+: : ; (151)S(2)(X2; qz; r) = R?e�i(X2�rk+qzz��)(̂i� iĵ)+: : ; (152)S(3)(X2; qz; r) = R?e�i(X2�rk+qzz��)(̂i+ iĵ)+: : ; (153)where the supersript on S labels the irrep and rk is thethe in-plane part of the vetor r. Here we have writtenthe omplex Fourier oeÆient S? as R? exp(i�), whereR? and � are real. We interpret R?ei� as being theomplex valued order parameter, �.The distributions involving X2 are redundant. SineX2 + qzk̂ = �[X1 � qz k̂℄, one sees thatS(2)(X2; qz; r;��) = S(3)(X1;�qz; r;�) : (154)Thus the order parameter for X2 is equivalent to theomplex onjugate of that for X1 when the sign of qz isreversed. Aordingly we only introdue order parame-ters �nei�n assoiated with X1 by writingS(2)(X1; qz ; r) = �2(qz)ei�2e�i(X1�rk+qzz) (̂i� iĵ) + : :S(3)(X1; qz ; r) = �3(qz)ei�3e�i(X1�rk+qzz) (̂i+ iĵ)+: : : (155)The magneti strutures whih these order parametersdesribe is best visualized in terms of the phase (r) � X1 � rk + qzz + � : (156)One see that for S(2) the spin at r is oriented in theplane and makes angle � (r) with respet to the posi-tive x-axis whereas for S(3) the spin at r is oriented inthe plane and makes angle  (r) with respet to the pos-itive x-axis. We show the phase (for qzz+ � = 0) in Fig.11. There are some properties of the two-dimensionalsystem whih do not arry over to the three-dimensionalstruture. For instane, for the two-dimensional systemthe plane of the lattie is a mirror plane and thereforethis magneti struture an not possibly indue a ferro-eletri moment. Also for the two-dimensional systemshown we ould not distinguish between  (r) and � (r)sine these are related via a two-fold rotation about anaxis perpendiular to the plane of the lattie. Now wedisuss the relevane of Fig. 11 to RFMO. From Fig.9 one sees that triangles have the losest oxygen tetra-hedra alternatingly above and below the lattie. So we

de�ne "positive triangles" to be those for whih the oxy-gen tetrahedra losest to the enter of the triangle areabove the plane. Suppose in Fig. 11 these are the trian-gles with a vertex oriented upward. We indiate these by"+" signs and the downward triangles by � signs. Notethat if we ignored the three dimensionality (i. e. if weignored the plus and minus signs signs), then we ouldhange the sign of  by a two-fold rotation about an axisperpendiular to the lattie plane. However, sine thisoperation interhanges + into �, it is not a symmetryof the three-dimensional lattie and the two spin distri-butions of Eq. (155) are distinguishable. The e�et ofthe additional phase � � qzz + � is to rotate all thespins in a given plane through the angle � and thusqz determines the heliity. For qz > 0, S(2) has negativeheliity sine its spin orientations follow � (r), whereasS(3) has positive heliity sine its spin orientations fol-low  (r). The hirality of a triangle is usually de�ned asbeing positive or negative aording to whether the spinrotate through plus or minus 120o as one traverses theverties of a triangle ounterlokwise. In Fig. 11 the uptriangles have positive hirality and the down ones neg-ative hirality. Thus this struture does not have overallhirality.We now onsider the symmetry of the order parameter.First of all R�2 = ��2 ;R�3 = ���3 : (157)Note the e�et of inversion whih transports the spinto the spatially inverted loation without hanging itsorientation. SoIS(2) (X1; qz; r) = S(2)(X1; qz ;�r)= S?ei�ei(X1�rk+qzz) (̂i� iĵ) + : := hS?e�i�e�i(X1�rk+qzz) (̂i+ iĵ)i� + : := S?e�i�e�i(X1�rk+qzz)(̂i+ iĵ) + : : : (158)This relation is equivalent to saying thatI�2(qz) = �3(qz)� : (159)The symmetry operation 2x only holds in the high-temperature (P3m1) phase. For it2xS(2)(X1; qz; r) = �2(qz)e�i(X1�rk�qzz) �î+ iĵ� ;(160)so that 2x�2(qz) = �3(�qz)� : (161)Now the quadrati free energy (keeping terms involvingboth irreps and both signs of qz) is of the formF2 = Aj�2(qz)j2 +Bj�3(qz)j2+Cj�2(�qz)j2 +Dj�3(�qz)j2 : (162)



27A ontinuous phase transition ours at a temperatureat whih one or more of the oeÆients A, B, C, orD beomes zero. Using Eq. (159) we see that inver-sion symmetry ensures that A = B and C = D. Inthe high-temperature phase 2x symmetry ensures thatA = D and B = C. Thus wavevetor seletion in thehigh-temperature phase would not selet the sign of qz.Indeed, if, as is believed, the dominant interplanar inter-ations are antiferromagneti interations between near-est neighbors in adjaent layers (J2 in Fig. 9), then hadthere been no lattie distortion at 180K, one would seletqz = 1=2 (whih is equivalent to qz = �1=2). Sine the2x symmetry is lost below 180K, in that range of tem-perature we should write A � C = B � D = 0� where� is an order parameter desribing the amplitude of thelattie distortion and 0 is a onstant whose sign an berelated to the quantity J3 � J4.66 Aordingly, we writethe free energy relative to the high-temperature undis-torted paramagneti phase in terms of the strutural (�)and magneti (�'s) order parameters asF2 = A(T � TD)�2 + u�4+Xqz>0 3Xn=2("�(T � T) + Jav) os(qz)#�"j�n(qz)j2 + j�n(�qz)j2#� 0� sin(qz)"j�n(qz)j2 � j�n(�qz)j2#)+O(�4) ; (163)where TD = 180K is the temperature at whih the lat-tie distortion appears, T is the mean �eld transitiontemperature for 120o magneti ordering on the triangu-lar lattie, and Jav represents the sum of the interplanarantiferromagneti interations that do not selet the signof qz. Also, we have inluded the results of a mirosopimodel66 in whih the term in 0 omes from distortion-modi�ed interations whih give the term proportionalto 0 sin(qz) whih leads to the lifting of degeneray be-tween +qz and �qz when � 6= 0.So the situation is the following. When we oolthrough TD � 180K, the system arbitrarily breaks rystalsymmetry from P3m1 and rotates the oxygen tetrahedrainto the P3 struture.66 Here the angle of rotation anhave either sign, depending on the sign of the brokensymmetry order parameter �. For the sake of argument,say that � is positive. Now when the temperature is low-ered so that magneti ordering takes plae, ordering takesplae in the hannels �2(qz) and/or �3(qz), where qz isthe value of qz at whih an instability with respet to ��rst appears as the temperature is lowered. At quadratiorder the phases �n of the order parameters �n(qz) arearbitrary and also the relative proportion of eah irrep isnot �xed. However, it is expeted that the fourth orderterms in the Landau expansion (whih tend to enfore�xed spin length) will favor having only a single irrep

present. So ordering is expeted in either �2 or in �3,but we an have domains of both, in addition to pos-sibly having domains of either sign of �. Although thedomains of di�erent �'s have the same wavevetor, theyhave opposite heliity, as disussed just above Eq. (157).F. Disussion1. Summary of ResultsIn Table XX we ollet the results for various multifer-rois. 2. E�et of Quarti TermsAs we now disuss, the quarti terms in the Landau ex-pansion an have signi�ant qualitative e�ets.6 In gen-eral, the quarti terms are the lowest order ones whihfavor the �xed length spin onstraint, a onstraint whihis known to be dominant at low temperature.71 How thisonstraint omes into play depends on what state is se-leted by the quadrati terms. For instane, in the sim-plest senario when one has a ferromagnet or an antiferro-magnet, the instability is suh (see Fig. 1) that orderingwith uniform spin length takes plae. Thus, as the tem-perature is lowered within the ordered phase, the order-ing of wavevetors near q = 0 for the ferromagnet (nearq = � for the antiferromagnet) whih would have be-ome unstable if only the quadrati terms were relevant,is strongly disfavored by the quarti terms. In the sys-tems onsidered here the situation is quite di�erent. Forinstane, in NVO,38 TMO,3 and MWO45 the quadratiterms selet an inommensurate struture in whih thespins are aligned along an easy axis and their magni-tudes are sinusoidally modulated. As the temperature islowered the quarti terms lead to an instability in whihtransverse spin omponent break the symmetry of thelongitudinal inommensurate phase. This senario ex-plains why the highest-temperature inommensurate lon-gitudinal phase beomes unstable to a lower-temperatureinommensurate phase whih has both longitudinal andtransverse omponents whih more nearly onserve spinlength.To see this result formally for NVO, TMO, or MWO,let �> (�<) be the omplex valued order parameter forthe higher-temperature longitudinal (lower-temperaturetransverse) ordering. The fourth order terms then leadto the free energy asF = a(T � T>)j�>j2 + b(T � T<)j�<j2+A(j�>j2 + j�<j2)2 +Bj�>�<j2+C[(�<��>)2 + (��<�>)2℄ ; (164)where A, B, and C are real. That C is real is a resultof inversion symmetry, whih, for these systems leads toI�n = ��n. The high-temperature representation does



28Phase T<(K) T>(K) q Irreps Refs. FE? Refs.NVO (HTI) 6.3 9.1 (q,0,0) �4 6,38 No 4,6NVO (LTI) 3.9 6.3 (q,0,0) �4 +�1 6,38 jj b 4,6TMO (HTI) 28 41 (0; q; 0) �3 3,49 No 2TMO (LTI) 28 (0; q; 0) �3 + �2 3 jj  2TbMn2O5 (HTI) 38 43 ( 12 ; 0; q)(a) �(b) 55,56 No 12TbMn2O5 (LTI) 33 38 ( 12 ; 0; q) �() 55,56 jj b 12YMn2O5 (C)(d) 23 45 ( 12 ; 0; 14 ) �(b) 58 jj b 12YMn2O5 (IC) 23 (� 12 ; 0; q) 58 jj b 12RFMO(e) 0 3.8 ( 13 ; 13 ; q) �2 or �3 8,66 jj  8CFO(f) (CIC) 10 14 (q; q; 0) �2 59,65 No 10CFO (NIC) 0? 10 (q; q; 0) �1 + �2 60 ?  10MWO 12.7 13.2 (qx; 12 ; qz) �2 45 No 13MWO 7.6 12.7 (qx; 12 ; qz) �2 + �1 45 jj b 13TABLE XX: Inommensurate Phases of various multiferrois. Exept for CFO eah phase is stable for zero applied magneti�eld for T< < T < T>. When T< = 0 it means that the phase is stable down to the lowest temperature investigated. We givethe inommensurate wavevetor and the assoiated irreduible representations in the notation of our tables. In the olumnlabeled \FE?" if the system is ferroeletri we give the diretion of the spontaneous polarization, otherwise the entry is "No."a) At the highest temperature the value of qx might not be exatly 1/2.b) The irrep is the two dimensional one (see Appendix B). In the HTI phase only one basis vetor is ative.) The irrep is the two dimensional one (see Appendix B). In the LTI phase both basis vetors are ative.d) This phase is ommensurate.e) For H < 2T.f) Data for CuFeO2 is for H � 8T.allow transverse omponents and ould, in priniple, sat-isfy the �xed length onstraint. In the usual situation,however, the exhange ouplings are nearly isotropi andthis state is not energetially favored. If the higher tem-perature struture is longitudinal, then B will surely benegative, whereas if the higher temperature strutureonserves spin length B will probably be positive. Byproperly hoosing the relative phases of the two orderparameters the term in C always favors having two ir-reps. So the usual senario in whih the longitudinalphase beomes unstable relative to transverse ordering isexplained (in this phenomenology) by having B be neg-ative, so that the disussion after Eq. (51) applies.To �nish the argument it remains to onsider the termin C, whih an be written asÆF4 = 2C�2<�2> os(2�< � 2�>) ; (165)where again we expressed the order parameters as in Eq.(46). Normally, if two irreps are favored, it is beausetogether they better satisfy the �xed length onstraint.What that means is that when spins have substantiallength in one irrep, the ontribution to their spin lengthfrom the seond irrep is small. In other words, the twoirreps are out of phase and we therefore expet that tominimize ÆF4 we do not set �< = �>, but rather�< = �> � �=2 : (166)In other words, we expet C in Eq. (165) to be positive.

The same reasoning indiates that the fourth order termswill favor �2 � �1 = �=2 in Eq. (135) for CFO.For all of these systems whih have two onseutiveontinuous transitions one has a family of broken sym-metry states. At the highest temperature transition onehas spontaneously broken symmetry whih arbitrarily se-lets between �> and ��>. (This is the simplest senariowhen the wavevetor is not truly inommensurate.) Inde-pendently of whih sign is seleted for the order parame-ter �>, one similarly has a further spontaneous breakingof symmetry to obtain arbitrarily either i�< or �i�<.(Here, as mentioned, we assume a relative phase �=2 for�<. In this senario, then, there are four equivalent lowtemperature phases orresponding to the hoie of signsof the two order parameters.The ases of TMO25 and YMO25 are di�erent fromthe above beause they have two order parameters fromthe same two-dimensional irrep and whih therefore aresimultaneously ritial. Therefore in suh a ase we writeF = a(T � T) �j�1j2 + j�2j2�+A(j�1j2 + j�2j2)2 +Bj�1�2j2+C �(�1��2)2 + (��1�2)2� : (167)Here again A, B, and C are real. That C is real is a resultof symmetry under my, as in Eq. (124). Here the fourthorder anisotropy makes itself felt as soon as the orderedphase is entered, but the above disussion about the sign



29of B remains operative. We �rst onsider YMO25 in itshigher temperature ommensurate (HTC) ordered phase.For it additional fourth order terms our beause 4q is areiproal lattie vetor, but these are not important forthe present disussion. Here the analysis of Ref. 58 indi-ates (see the disussion of our Fig. 7) that only a singleorder parameter ondenses in the HTC phase. This indi-ates that energetis must favor positive B in this ase.The question is whether B is also positive for TMO25. Aswe will see in the next setion one has ferroeletriity un-less the magnitudes of the two order parameters are thesame. For YMO25 the HTC phase is ferroeletri and theonlusion that only one order parameter is ative om-ports with this. However, for TMO25 the situation is notompletely lear. Apparently there is a region suh thatone has magneti ordering without ferroeletriity.12,55 Ifthis is so, then TMO25 di�ers from YMO25 in that itshigh temperature inommensurate phase has two equalmagnitude order parameters.IV. MAGNETOELECTRIC COUPLINGFerroeletriity is indued in these inommensuratemagnets by a oupling whih is somewhat similar to thatfor the so-alled \improper ferroeletris."17 To see howsuh a oupling arises within a phenomenologial pi-ture, we imagine expanding the free energy in powers ofthe magneti order parameters whih we have studied indetail in the previous setion and also the vetor orderparameter for ferroeletriity whih is the spontaneouspolarization P, whih, of ourse, is a zero wavevetorquantity. If we had noninterating magneti and ele-tri systems, then we would write the noninterating freeenergy, Fnon asFnon = 12X� ��1E;�P 2� +O(P 4)+12X� a�(T � T�)j��(q)j2 +O(�4) ;(168)where ��1E;� is of order unity. The �rst line desribes asystem whih is not lose to being unstable relative todeveloping a spontaneous polarization (sine in the sys-tems we onsider ferroeletriity is indued by magnetiordering). The magneti terms desribe the possibilityof having one or more phase transitions at whih sues-sively more magneti order parameters beome nonzero.As we have mentioned, the senario of having two phasetransitions in inommensurate magnets is a very om-mon one,30 and suh a senario is well doumented forboth NVO6,38 and TMO.2,3 Below we will indiate theexistene of a term linear in P , shematially of the form��M2P , where � is a oupling onstant about whihnot muh beyond its symmetry is known. One sees thatwhen the free energy, inluding this term, is minimizedwith respet to P one obtains the equilibrium value of P

as hP i = �E�M2 : (169)A. Symmetry of Magnetoeletri InterationWe now onsider the free energy of the ombined mag-neti and eletri degrees of freedom whih we write asF = Fnon + Fint : (170)In view of time reversal invariane and wavevetor on-servation, the lowest ombination of M(q)'s that an ap-pear is proportional to M�(�q)M�(q). So generiallythe term we fous on will be of the formFint = X�� ��M�(q)M�(�q)P ; (171)where �, �, and  label Cartesian omponents. But, aswe have seen in detail, the quantities M�(q) are linearlyrelated to the order parameter ��(q), assoiated with theirrep �. Thus instead of Eq. (171) we writeFint = X�;�0;A��0��(q)��0 (q)�P : (172)The advantage of this writing the interation in this formis that it is expressed in terms of quantities whose sym-metry is manifest. In partiular, the order parameterswe have introdued have well spei�ed symmetries. Forinstane it is easy to see that for most of the systems stud-ied here, magnetism an not indue ferroeletriity whenthere is only a single representation present.3,4 This fol-lows from the fat that for NVO and TMO, for instane,Ij�nj2 = j�nj2 ; (173)as is evident from Eq. (50). The interpretation of this issimple: when one has one representation, it is essentiallythe same as having a single inommensurate wave. Butsuh a single wave will have inversion symmetry (to aslose a tolerane as we wish) with respet to some lattiepoint. This is enough to exlude ferroeletriity. So theanonial senario3,4 is that ferroeletriity appears, notwhen the �rst inommensurate magneti order parameterondenses, but rather when a seond suh order parame-ter ondenses. Unless the two waves have the same origin,their enters of inversion symmetry do not oinide andthere is no inversion symmetry and hene ferroeletri-ity will our. One might ask whether or not the twowaves (i. e. two irreps) will be in phase. The e�et, dis-ussed above, of quarti terms is ruial here. The quar-ti terms typially favors the �xed length spin onstraint.To approximately satisfy this onstraint, one needs to su-perpose two waves whih are out of phase. Indeed theformal result, obtained below in Eq. (178), shows thatthe spontaneous polarization is proportional to the sineof the phase di�erene between the two irreps.4 We nowonsider the various systems in turn.



30B. NVO, TMO, and MWOWe now analyze the anonial magneto-eletri inter-ation in the ases of NVO, TMO, ad MWO. These asesare all similar to one another and in eah ase the orderparameters have been de�ned so as to obey Eq. (50).This relation indiates that if we are in a phase for whihonly one irrep is ative, then we may hoose the originof the inommensurate system so that the phase of theorder parameter at the origin of a unit ell is arbitrarilylose to zero. When this phase is zero, the spin distri-bution of this irrep has inversion symmetry relative tothis origin. In the ase when only a single irrep is ative,this symmetry then indiates that the magneti stru-ture an not indue a spontaneous polarization.4 As men-tioned, in the high temperature inommensurate phasesof NVO, TMO, and MWO only one irrep is present,and this argument indiates that the magneto-eletriinteration vanishes in agreement with the experimen-tal observation2,4,13 that this phase is not ferroeletri.Notie that this argument relies on symmetry and doesnot invoke the fat that the HTI phase may involve aollinear spin struture (as it seems for TMO and MWO,but not for NVO). Small departures from ollinearity (in-dued by, say, Dzialoshinskii-Moriya interations72) donot hange the symmetry of the struture and thereforean not indue ferroeletriity. This onlusion is notobvious from the spin-urrent models.15,16We now turn to the general ase when one or moreirreps are present.4{7 We write the magneto-eletri in-teration asFint = X��0A��0��(q)��0(q)�P ; (174)where ��(q) = ��(�q). For this to yield a real value ofF we must have Hermitiity:A��0 = A��0� : (175)In addition, beause this is an expansion relative to thestate in whih all order parameters are zero, this intera-tion has to be inversion under all operations whih leavethis \vauum" state invariant.26,31 In other words thisinteration has to be invariant under inversion (whihtakes P into �P). In view of Eq. (50) we onludethat A�;�0; vanishes for �0 = �. Thus, for these systemsit is essential to have the simultaneous existene of twodistint irreps. A similar phenomenologial desription ofseond harmoni generation has also invoked the nees-sity of having simultaneously two irreps.70 (We will seebelow that systems suh as TMO25 and YMO25 provideexeptions to this statement.) So we writeFint = 12 X��0:�6=�0 A��0��(q)��0(q)�P : (176)Now invoke Eq. (50). Sine inversion hanges the signof P we onlude that A��0 = �A�0� . This ondition

taken in onjuntion with Eq. (175 indiates that A��0is pure imaginary. ThusFint = i2 X��0:�<�0 Pr��0 [��(q)��0(q)����(q)���0(q)℄ ; (177)where r��0 is real valued. Sine usually we have at mosttwo di�erent irreps, whih we label \>" and \<," wewrite this asFint = X rP�>�< sin(�> � �<) : (178)where r is real and �< = �< exp(i�<) and similarly forthe irrep \>." The fat that the result vanishes when thetwo waves are in phase is lear beause in that ase onean �nd a ommon origin for both irreps about whihone has inversion symmetry. In that speial ase one hasinversion symmetry and no spontaneous polarization anbe indued by magnetism. The above argument appliesto all three systems, NVO,4 TMO,3 and MWO. As wewill see in a moment, it is still possible for inversion sym-metry to be broken and yet indued ferroeletriity notbe allowed.We an also dedue the diretion of the spontaneouspolarization by using the transformation properties of theorder parameters. given in Eq. (49). We start by ana-lyzing the experimentally relevant ases at low or zeroapplied magneti �eld. For NVO the magnetism in thelower temperature inommensurate phase is desribed6,38by the two irreps �4 and �1. One sees from Eq. (49)that the produt ��1�4 is even under mz and odd un-der 2x. For the interation to be an invariant, Phas to transform this way also. This implies that onlythe b-omponent of the spontaneous polarization an benonzero, as observed.4 For TMO the lower temperatureinommensurate phase at low magneti �eld is desribed3by irreps �3 and �2. From Table XII we see that ��3�2 iseven under mx and odd under mz, whih indiates thatP has to be even under mx and odd under mz. This anonly happen if P lies along the  diretion, as observed.2Finally, for MWO, we see that �1��2 is odd under my.This indiates that P also has to be odd under my. Inother words P an only be oriented along the b dire-tion, again as observed.13 In this onnetion one shouldnote that this onlusion is a result of rystal symme-try, assuming that the magneti struture results fromtwo ontinuous transitions, so that representation the-ory is relevant. This onlusion is at variane with theargument given by Heyer et al.14 who \expet a polar-ization in the plane spanned by the easy axis and theb axis ...," whih they justify on the basis of the spi-ral model.15,16 It should be noted that their observationthat the spontaneous polarization has a nonzero om-ponent along the a-axis at zero applied magneti �eldontradits the symmetry analysis given here. The au-thors mention that some of the unexpeted behavior they



31observe might possibly be attributed to a small ontentof impurities.It is important to realize that the above results are aonsequene of rystal symmetry. In view of that, it isnot sensible to laim that the fat that a theory gives theresult that the polarization lies along b makes it moreplausible than some ompeting theory. The point is thatany model, if analyzed orretly, must give the orretorientation for P.It is also worth noting that this phenomenology hassome semiquantitative preditions. To see this, we mini-mize Fnon + Fint with respet to P to getP = ��E;r�>�< sin(�> � �<) : (179)This result indiates that near the magneto-ferroeletriphase transition of NVO one has P / �4�1,73 or sinethe high-temperature order parameter �4 is more or lesssaturated when the ferroeletri phase is entered, one hasP / �1, where �1 is the order parameter of the lowertemperature inommensurate phase. This relation hasnot been tested for NVO, TMO, or MWO, but we willsee that suh a relation has been observed for RFMO.As we disussed, in the low temperature inommensu-rate phase one will have arbitrary signs of the two or-der parameters. However, the presene of a smll eletri�eld will favor one partiular sign of the polarization andhene, by Eq. (179) one partiular sign for the produt�>�<. Presumably this ould be tested by a neutrondi�ration experiment.C. TMO25The ase of TMO25 is somewhat di�erent. Here wehave only a single irrep. One expets that as the temper-ature is lowered, ordering into an inommensurate statewill take plae, but the quadrati terms in the free en-ergy do not selet a diretion in �1-�2 spae. At presentthe data has not been analyzed to say whih diretionis favored at temperature just below the highest order-ing temperature. (For YMO25, as mentioned above, thediretion �1 = 0 is favored.) As the temperature is re-dued, it is not possible for another representation toappear beause only one irrep is involved. However, or-dering aording to a seond eigenvalue ould our. We�rst analyze the situation assuming that we have only asingle doubly degenerate eigenvalue. In this ase we anhave a spin distribution [as given in Eq. (123)℄ involvingthe two order parameters �1 and �2 whih measure theamplitude and phase of the ordering of the eigenvetor ofthe seond and third olumns of Table XVI, respetively.In terms of these order parameters, the magneto-eletrioupling an be written asFint = Xnm anm��n�mP ; (180)where  = x; y; z and n;m = 1; 2 label the olumns ofthe irrep labeled �1 and �2, respetively, in Table XVI.

Sine reality requires that anm = a�mn , this interationis of the formFint = X P"a1 j�1j2 + a2 j�2j2+b�1��2 + b���1�2# : (181)Now use invariane under inversion, taking note of Eq.(124). One sees that under inversion �1��2P hangessign, so the only terms whih survive lead to the resultFint = X rP [j�1j2 � j�2j2℄ : (182)Using Eq. (124) we see that [j�1j2� j�2j2℄ is even undermx and odd under my. For Fint to be invariant underinversion therefore requires that P be odd undermy andeven under mx, so P has to be along b as is found.12D. CFOAgain we start with the trilinear magneto-eletri in-teration, but here we have to allow for oupling of thespontaneous polarization to order parameters assoiatedwith any of the wavevetors in the star. So we writeFint = XknmAnmk�n(qk)�m(qk)�P ; (183)where k is summed over the values 1, 2, 3 and real-ity implies that Anmk = A�mnk . Sine we have thatI�n(qk) = �n(qk)�, we use invariane under I to elim-inate terms with n = m: we need two irreps for ferro-eletriity. Indeed, the higher temperature phase with asingle order parameter �2 is not ferroeletri.10 Thus themagnetoeletri interation must be of the formFint = Xk [Ak�1(qk)�2(qk)�+A�k�1(qk)��2(qk)�P : (184)Inversion symmetry indiates that Ak = �A�k , so wewriteFint = iXk rk [�1(qk)�2(qk)� � �1(qk)��2(qk)℄P= 2Xk rk�1(qk)�2(qk) sin(�2 � �1)P ; (185)where rk is real. Now onsider the term involvingwavevetor q1 and use Eq. (130) whih gives that�1(q1)�2(q1)� hanges sign under 2x. So for the inter-ation to be invariant under 2x (as it must be), P hasto be odd under 2x. This means that for q = q1, P has



32to be perpendiular to the x axis. SoFint = 2�1(q1)�2(q1) sin(�2 � �1)[aPz + bPy℄+2�1(q2)�2(q2) sin(�2 � �1)�[aPz � (b=2)Py � (p3b=2)Px℄+2�1(q3)�2(q3) sin(�2 � �1)�[aPz � (b=2)Py + (p3b=2)Px℄ ; (186)where the real-value oeÆients a and b are not �xedby symmetry. Here we onstruted the terms involv-ing q2 and q3 by using the transformation properties ofthe three-fold rotation, so that Fint is invarianet undr allthe symmetry operations. Note that symmetry does notfore P to lie along the three-fold axis beause the orien-tation of the inommensurate wavevetor has broken thethree-fold symmetry.In fat, the above results suggest some further experi-ments. First of all, it would be useful to have a de�nitivedetermination of the spin struture of the NIC phase, inpartiular to test whether our idea of a spin-op typetransition has ourred. One should note that symmetrydoes not ompletely restrit the orientation of P when,for instane, the wavevetor is q = q1. In this onne-tion it is interesting to note that in Ref. 10 a ompo-nent of P along  was disarded as being due to samplemisalignment. However, suh a omponent is allowedby symmetry. Although, the spin urrent model15,16 issatis�ed by having the spin-op state we suggest, ouranalysis indiates that this spin on�guration an not beuniquely identi�ed just from the orientation of P, so adetermination of the atual spin struture is important.Furthermore, the form of Eq. (186) indiates that theorientation of qn is oupled to the applied eletri �eldin the plane perpendiular to . In other words, by ap-plying an eletri �eld perpendiular to the  axis oneould selet between the three equivalent wavevetors ofthe star. (Sine, the rystal struture distortion also im-plies suh a seletion, one would have to apply a strongenough eletri �eld so that the eletri energy overomesthe energy of the lattie distortion.)In the above analysis we did not mention the fat thatthe existene of the ferroeletri phase requires a mag-neti �eld of about 8-10T oriented along the three-foldaxis. In priniple one should expand the free energy inpowers of H . Then presumably as a funtion of H onereahes a regime where �rst one inommensurate phaseorders and then at a lower temperature the seond in-ommensurate order parameter appears. Then the phe-nomenology of the trilinear magnetoeletri interationwould ome into play as analyzed above.

E. RFMOAgain we start from Eq. (174), whih for the presentase of two irreps (n = 2; 3) we writeFint = X "r2 j�2j2 + r3 j�3j2+b�2��3 + b��3��2#P ; (187)where b is omplex and rn is real. First use inversionsymmetry under whih P hanges sign and Eq. (159)holds. This symmetry indiates that b = 0 and r2 =�r3; , so thatFint = X r �j�2j2 � j�3j2�P : (188)Now onsider invariane under the three-fold rotation,whih leaves j�nj2 invariant. One sees that the onlynonzero omponent of P an be the  omponent, so that�nally Fint = r �j�2j2 � j�3j2�P : (189)As mentioned above, when the total free energy is mini-mized with respet to P in order to determine its equi-librium value, one �nds thatP = �r�E; �j�2j2 � j�3j2� : (190)Sine the magneti struture RFMO has beendetermined8 to have only a single order parameter(all it �a) in the low �eld phase, in this phaseP / j�aj2 : (191)Sine the right-hand side of this equation is proportionalto the intensity of the Bragg reetions whih appear asone enters the inommensurate phase, this relation pre-dits that these Bragg intensities are proportional to themagnitude of the spontaneous polarization. This relationhas been experimentally on�rmed.8It is interesting to note that for this ase the \spiralmodel" or spin-urrent model do not apply in their sim-plest form. The spin rotated in a plane perpendiular tothe three fold axis, so that Si�Sj is parallel to the three-fold axis, no matter what values i and j may take. In thespin urrent model the spontaneous polarization is sup-posed to be perpendiular to this ross produt, whihwould inorretly predit the spontaneous polarization tobe perpendiular to the three-fold axis, In ontrast, ex-periment shows the spontaneous polarization to lie alongthe three-fold axis.F. High Magneti FieldWe an also say a word or two about what happenswhen a magneti �eld is applied. In TMO, for instane,



33one �nds2 that for applied magneti �elds above about10T in either the a or b diretions, the lower temperatureinommensurate phase has a spontaneous polarizationalong the a axis. Keep in mind that we want to identifythis phase with two irreps and from the phase diagramwe know that the higher temperature inommensuratephase is maintained into this high �eld regime. So thehigher temperature phase is still that of �3 at these high�elds. Referring to Table XII we see that to get �m��n tobe odd under mx and even under mz (in order to get apolarization along the a axis) we an only ombine irrep�1 with the assumed preexisting �3. Therefore it is learthat the magneti struture has to hange at the sametime that diretion of spontaneous polarization hangesas a funtion of applied magneti �eld.7,16 It is also inter-esting, in this onnetion to speulate on what happensif the lower additional irrep had been �4 so that �4 and�3 would oexist. In that ase �4��3 is odd under both mxand mz. These onditions are not onsistent with any di-retion of polarization, so in this hypothetial ase, eventhough we have two irreps and break inversion symmetry,a polar vetor (suh as the spontaneous polarization) isnot allowed.74For MWO a magneti �eld along the b axis of about10T auses the spontaneous polarization to swith its di-retion from along the b-axis to along the a axis.13 Wehave no phenomenologial explanation of this behavior atpresent. This behavior seems to imply that the waveve-tor for H > 10T is no longer of the form q = (qx; 12 ; qz).G. DisussionWhat is to be learned from the symmetry analysis ofthe magnetoeletri interations? Perhaps the most im-portant point to keep in mind is to reognize whih re-sults are purely a result of rystal symmetry and whihare model dependent. For instane, as we have seen, thediretion of the spontaneous polarization is usually a re-sult of rystal symmetry. So the fat that a mirosopitheory leads to the observed diretion of the polarizationdoes not lend redene to one model as opposed to an-other. In a semiquantitative vein, one an say that sym-metry alone predits that near the ombined magneto-eletri phase transition P will be approximately pro-portional to the order parameter raised to the nth power,where the value of n is a result of symmetry. (n = 1 forNVO or TMO, whereas n = 2 for TMO25 or RFMO).We should also note that while the spontaneous po-larization does arise from the oupling to another (mag-neti) order parameter, this oupling still indues a di-vergene in the eletri suseptibility (and hene in thedieletri onstant) at the magnetoeletri phase transi-tion. To illustrate this we onsider the less trivial asewhere one has two order parameters. Thus, for example,we analyze the ase of NVO and onsider the magneto-eletri free energy at a temperature just above the lowertemperature transition, denoted T<, where �< develops.

There the relevant terms in the free energy areF = 12��1E;yP 2y + 12(T � T<)j�<j2+12(T � T>)j�>j2 + 14uj�>j4+ i2�[�>��< � ��>�<℄Py �EyPy ; (192)where Ey is the omponent of the eletri �eld in the ydiretion, and as before �< = �<ei�< and �> = �>ei�> ,where, for simpliity, we have omitted the wavevetorarguments. Sine the magnetoeletri interation termproportional to � is a small perturbation, and sine thetemperature is signi�antly less than T>, the value ofj�>j is essentially �xed by minimizing the terms in theseond line of Eq. (192). The phase of this omplexorder parameter is probably loked by some small om-mensuration energy (not written in the above equation)to a ommensurate value. So we will will onsider that�> in the last line of Eq. (192) is �xed by the terms inthe free energy relevant to the ordering at T>. With thisunderstanding we write the free energy asF = 12��1E;yP 2y + 12(T � T<)j�<j2+ i2�[�>��< � ��>�<℄Py �EyPy (193)and we now analyze the transition at T = T< aordingto this free energy. Apart from the term proportional toEy, this free energy as a quadrati form in the variables�< and Py (remember that here �> is simply a omplexonstant). To diagonalize this quadrati form it is sim-plest to write �< = s + it where s and t are real andsimilarly we set �> = a+ ib. Then the terms quadratiin s, t and Py areF2 = 12��1E;yP 2y + 12(T � T<)[s2 + t2℄+�[sb� ta℄Py : (194)As a preliminary to diagonalizing this form we setx = [sa+ tb℄=pa2 + b2 ;y = [ta� sb℄=pa2 + b2 ; (195)in whih aseF2 = 12��1E;yP 2y + 12(T � T<)[x2 + y2℄+�0yPy ; (196)where �0 = �j�>j. This form shows that the variablex is deoupled from the other variables, y and Py. Thenormal oordinates ~y and ~Py are obtained from y andPy by a transformation whih eliminates the perturba-tive oupling �0yPy. The transition temperature for ~y isobtained expliitly below in Eq. (201) as~T< = T< + �02�E;y : (197)



34Thus we see that as the temperature is lowered, the vari-able x would beome ritial at T = T<, exept for thefat that ~y ondenses �rst (at the higher temperature~T<). To understand the meaning of the variables x andy write x = �<��> + ��<�>2j�>jy = i(�<��> � ��<�>)2j�>j : (198)Thus we see that x is the part of �< whih is in phasewith �> and y is the part of �< whih is out of phasewith �>. These results are ompletely onsistent withEq. (178).Now we develop an expression for the eletri andmagneto-eletri suseptibilities in the presene of themagnetoeletri interation as the temperature is low-ered toward the phase transition at T � T<. Note thatthe free energy is of the formF = 12 ~vMv � ~vE ; (199)where v the olumn vetor with entries Py and y, E isa olumn vetor with entries Ey and 0, and M is thematrix of oeÆients of the quadrati form in Py and yof Eq. (196). Minimization with respet to v yields theequation of statev � " Pyy # =M�1 " Ey0 # : (200)Then the renormalized eletri suseptibility �̂y is givenby �̂y � �Py�Ey�Ey=0 = M22M11M22 �M212= �E;y(T � T<)(T � T<)� �02�E;y� �E;y(T � T<)(T � ~T<) ; (201)so that as T ! ~T< one has�̂y = �2E;y�02(T � ~T<) : (202)Thus the eletri suseptibility diverges at T = ~T< (al-though with a severely redued amplitude.) It an alsobe shown that for T approahing ~T< from below that�̂y � �Py�Ey�Ey=0 = a�2E;y�02jT � ~T<j ; (203)where a is a onstant of order unity. The magnetoele-tri oupling inreases the eletri suseptibility even far

above T< wherê�y � �E;y "1 + �02�E;yT � T< # : (204)The magneto-eletri suseptibility�E;� � �y�Ey�Ey=0 (205)gives the dependene of the magneti order parameter�< on the eletri �eld. Using Eq. (200) we have�E;� = � M21M11M22 �M212= � �0�E;yT � ~T< : (206)To measure this suseptibility would seem to require mea-suring (probably via a neutron di�ration experiment) y,the omponent of the order parameter �< whih is outof phase with �> in a small eletri �eld.It goes without saying that our phenomenologial re-sults are supposed to apply generally, independently ofwhat mirosopi mehanism might be operative for thesystem in question. (A number of suh mirosopi al-ulations have appeared reently.15,75{78) Therefore, wetreat YMO25 and NVO with the same methodology al-though these systems are said55 to have di�erent mi-rosopi mehanisms. A popular phenomenologial de-sription is that given by Mostovoy16 based on a ontin-uum formulation. However, this development, althoughappealing in its simpliity, does not orretly apturethe symmetry of several systems beause it ompletelyignores the e�et of the di�erent possible symmetrieswithin the magneti unit ell.74 Furthermore, it does notapply to multiferroi systems, suh as YMO25 or RFMO,in whih the plane of rotation of the spins is perpen-diular to the wavevetor.8,58 (The spin-urrent model15also does not explain ferroeletriity in these systems.)In addition, a big advantage of the symmetry analysispresented here onerns small perturbations. While thestruture of NVO and TMO is predominantly a spiralin the ferroeletri phase, one an speulate on whetherthere are small spiral-like omponents in the nonferro-eletri (HTI) phase. In other words, ould small trans-verse omponents lead to a small (maybe too small forurrent experiments to see) spontaneous polarization? Ifwe take into aount the small magneti moments in-dued on the oxygen ions, ould these lead to a smallspontaneous polarization in an otherwise nonferroeletriphase? The answer to these questions is obvious withina symmetry analysis like that we have given: these in-dued e�ets are still governed by the symmetry of thephase whih an only be lowered by a spontaneous sym-metry breaking (whih we only expet if we ross a phaseboundary). Therefore all suh possible indued e�etsare taken into aount by our symmetry analysis.



35Finally, we note that the form of the magneto-eletriinteration � M2P suggests a mirosopi mehanismthat has general validity, although it is not neessarily thedominant mehanism. This observation stimulated aninvestigation of the spin phonon interation one obtainsby onsidering the exhange HamiltonH = Xij�� J��(i; j)S�(i)S�(j) : (207)When J��(i; j) is expanded to linear order in phonon dis-plaements, u, one obtains a magneto-eletri interationof the form uSS.75 After some algebra it was shown75that the results for the diretion of the indued sponta-neous polarization (when the spins are ordered appropri-ately) agrees with the results of the symmetry argumentsused here. In addition a �rst-priniples alulation ofthe phonon modes75 led to plausible guesses as to whihphonon modes play the key role in the magneto-eletrioupling. But whatever the mirosopi model, the phe-nomenology presented here should apply.V. DYNAMICSHere we briey indiate how symmetry onsiderationsapply to dynamial properties. We onsider two phe-nomena, namely, (a) the mixing of the infrared ativephonons with the Raman ative phonons when inversionsymmetry is broken and (b) the mixing of eletri dipoleallowed transitions into spin resonane transitions whihpreviously were only magneti dipole allowed.A. Phonon MixingWe disuss phonon dynamis with respet to oordi-nates appropriate to the phase whih is paramagnetiand paraeletri. In that phase, at zero wavevetor, thephonon modes an be lassi�ed as even (Raman ative) orodd (infra-red ative). Here we display expliitly the in-teration whih auses the mixing of even and odd modeswhen the ferroeletri phase (for whih inversion symme-try is broken) is entered. In the ferroeletri phase thespontaneous dipole moment is indued by the trilinearmagneto-eletri interation disussed above in detail.Here we disuss the mixing of even and odd modes forNVO, sine NVO has been the objet of detailed phononalulations.75 As disussed in that referene the exis-tene of a nonzero spontaneous dipole moment along therystal b axis (whih here we all the y-axis) reets thefat that all the zone enter phonon modes whih trans-form like the y-omponent of a vetor develop nonzerostati displaements. We now onsider the anharmoniphonon interations. (The present disussion is more de-tailed than that of Aguilar et al.,79 but is otherwise iden-tial to what they have done.) In partiular the third

1 2y 2x 2z I my mx mz FuntionAg 1 1 1 1 1 1 1 1 x2,y2,z2Au 1 1 1 1 -1 -1 -1 -1 xyzB2g 1 1 -1 -1 1 1 -1 -1 xzB2u 1 1 -1 -1 -1 -1 1 1 yB3g 1 -1 1 -1 1 -1 1 -1 yzB3u 1 -1 1 -1 -1 1 -1 1 xB1g 1 -1 -1 1 1 -1 -1 1 xyB1u 1 -1 -1 1 -1 1 1 -1 zTABLE XXI: Irreduible representation of the paramagnetispae group of NVO. The vetor representations are B1u, B2u,and B3u whose wavefuntions transform like z, y, and x, re-spetively.order interations an be written asV (3) = Xq1q2q3X�� ��(q1q2q3)Q�(q1)Q�(q2)Q(q3)�(q1 + q2 + q3) ; (208)where Q�(q) is the amplitude of the �th phonon atwavevetor q and � is only nonzero when its argumentis zero modulo a reiproal lattie vetor. The terms inthis interation whih are relevant to our disussion arethose whih mix even and odd modes at zero wavevetor.So we set all the wavevetors to zero in Eq. (208). Inaddition, sine we want to disuss how modes mix, wewrite the e�etive bilinear interation asV (3) = X�� ��Q�(0)Q�(0)hQ(0)i ; (209)where h i indiates a stati average value. Beausethe interation only involves zero wavevetor modes, wean pro�tably use their symmetry properties. Aord-ingly in Table XXI we reord the symmetries of the var-ious phonon modes. To emphasize the symmetry of themodes, we label the modes as Q(n)� , where � is the ir-reduible representation (irrep), whih we identify by itsfuntion (y for B2u, xyz for Au, et. and 1 for Ag).Only the B2u modes whih transform like y an have anonzero average value, beause, as we have seen, in NVOthe spontaneous polarization is �xed by symmetry to liealong the y axis. The interation of Eq. (209) has tobe invariant under the symmetry operations of the paraphase. Therefore the interation an only ontain thefollowing termsV (3) = Xn hQ(n)y i"anmrQ(m)1 Q(r)y + bnmrQ(m)xyzQ(r)xz+nmrQ(m)yz Q(r)z + dnmrQ(m)xy Q(r)x # : (210)This interation mixes odd symmetry modes whih ini-tially were only infra-red ative (exept for xyz modes
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FIG. 14: (Color online). Shemati diagram of the frequenyand infrared absorption ross setion of a mode whih is Ra-man ative in the paraeletri phase for T > TF . Note thehange in slope of the frequeny when the ferroeletri phaseis entered. We assume the mean-�eld estimate for the orderparameter: P / (TF � T )1=2whih are silent) into modes whih were previously onlyRaman ative (transforming like 1, xz, yz, or xy) Simi-larly this interation mixes even symmetry modes whihinitially were only Raman ative into modes whih werepreviously only infra-red ative (transforming like x, y,or z). Experiments an distinguish the polarization de-pendene of the infra-red and Raman modes, so one antest the predition that modes whih were, for exam-ple, xy-like Raman modes are now infrared ative underx-polarized radiation. Sine the admixture in the wave-funtion is proportional to hQ(n)y i, whih itself is pro-portional to the spontaneous polarization, one sees thatthe new intensities are saled by the square of the spon-taneous polarization. Also, in the presene of a weakperturbation, the mode energies will show an additionaltemperature dependene (in addition to what they hadin the paraeletri phase) whih is also proportional tothe square of the spontaneous polarization. This is illus-trated shematially in Fig. 14B. EletromagnonsHere I give a brief disussion of \eletromagnons." Thisterm refers to the possibility of exiting magnons throughan eletri dipole matrix element.80{83 This existene ofthis proess implies a mixing of spin operators and thespontaneous polarization, so that the spin-wave developsa dipole moment. In general terms, suh an interationis implied by the trilinear magneto-eletri interationstudied in Se. IV. The treatment here inludes elementsfrom the theories of Katsura et al.81 and of Pimenov etal..80,82Again, to exemplify the idea, I desribe the situationfor NVO (the ase of TMO is almost idential) and will
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FIG. 15: (Color online) Shemati diagram of the spin wave-funtions within the unit ell of NVO for the various ir-reps. For simpliity only the Ni spine sites at r = rs;n forn = 1; 2; 3; 4 (see Table II) are shown. The x and z axes areindiated and the positive y axis is into the paper. (Filledirles represent spin omponents into the paper and x's spinomponents out of the paper.) This �gure is a pitorial rep-resentation of the data of Table IV. In the HTI phase thespin distribution is that of �4 within whih the x-omponentis dominant.fous on the HTI phase where only the single order pa-rameter �HTI of irrep �4 is nonzero. The aim of thepresent disussion is to analyze the onstraints of sym-metry on the equations of motion.81 Sine it is only inthe HTI phase that symmetry provides onstraints on theeletromagnon interation,80,82 we onentrate on thisase, without assuming a spei� model of interations.We start by writing the equation of motion for theGreen's funtion for an infra-red ative phonon in thenotation of Zubarev84!2hhQ�;m;Q�;mii = 1 + hh�H=�Q�;m;Q�;mii ;(211)where Q�;m is the mth mass weighted normal oordi-nate for the zero wavevetor of �-like symmetry (� =x; y; z).75 In the absene of the magneto-eletri intera-tion we set �H=�Q�;m = !2�;mQ�;m. We now inlude themagneto-eletri interation Ve�m. In the HTI phase ofNVO where only the order parameter �> of irrep �4 ispresent, the spin-phonon oupling we need to mix modesmust arise from an e�etive bilinear interation of theform Ve�m = X�;�;m ��;�;mh�>(q)i��(�q)Q�;m+: : ; (212)where ��(q) represents a spin funtion having the sym-metry of irrep � and � is a oeÆient. Symmetry ditatesthat the only possible terms of this type have (a) � = �2in whih ase �4 � �2 transforms like z, so that in this



37term � = z and (b) � = �1 in whih ase �4 � �1 trans-forms like y, so that in this term � = y. Thus we writeVe�m = Xm �(m)z h�>(q)i��2(�q)Qz;m+Xm �(m)y h�>(q)i��1(�q)Qy;m + : : :(213)Here we see that magnons an only ouple to y-like orz-like infra-red ative phonons. Then(!2 � !2y;m) hhQy;m;Qy;mii = 1+�(m)y h�>(q)ihh��1 (�q);Qy;mii+�(m)y �h�>(q)�ihh��1 (q);Qy;mii :(214)Similarly the equations of motion with respet to theseond argument yields(!2 � !2y;m)hh��1 (q);Qy;mii= �y(m)h�>(q)ihh��1 (q);��1 (�q)ii : (215)From Fig. 15 we see that ��1 has a y-omponent ofspin whih rotates the staggered moment (whih is dom-inantly along the x-axis) of the unit ell. Therefore thisspin Green's funtion will interset the lowest frequenymagnon mode at frequeny !0. This same disussion alsoapplies to the analogous treatment of the z-like phononwhih ouples to the z-omponent of ��2(q). For n = 1or n = 2 we sethh��n(q);��n (�q)ii = hSi!2 � !20 ; (216)where hSi is a spin amplitude. In writing Eq. (216) wenoted that the spin Green's funtion in Cartesian oordi-nates is a linear ombination of raising and lowering spinGreen's funtions. Eventually we are led to a solutionwhih to leading order in the magneto-eletri intera-tion an be written ashhQ�;m;Q�;mii = 1!2 � !2�;m ���;m ; (217)where ��;m = �2�;m!2 � !20 ; (218)with �2�;m = 2hSijh�>(q)i�(m)� j2. This form leads to mix-ing of the spin and phonon modes. The renormalizedmode frequenies are given by the poles of the Green'sfuntion whih our at~!2�;m � !2�;m + �2�;m!2�;m � !20� !2�;m + �2�;m!2�;m (219)

and85 ~!20 = !20 �X�;m �2�;m!2�;m � !20� !20 �X�;m �2�;m!2�;m ; (220)where � assumes the values y and z and we assumed that!0 � !�;m. The most important e�et of this mixing isthat it allows magnon absorption in an a. . eletri�eld.81 This is enoded in the Green's funtionhh��1(q);Q�;mii = ���;mh�>(q)ihSi!2�;m(!2 � !20) (221)when the a. . eletri �eld is along the � = y or � = zdiretion.The above interpretation has to be modi�ed for thesystem Eu0:75Y0:25MnO3.86 As these authors disuss, theshift in the frequeny of the optial phonon is too smallto be onsistent with the amount of its mixing with themagnon if one relies on a trilinear interation of the formV3 � ��(q)�(�q)Q (where Q is a phonon amplitude), aswe have assumed above. It is possible to avoid this in-onsisteny if one posits a quarti interation of the formV4 � ��(q)�(�q)QQ and the sign of � is suh as to de-rease the frequeny of the optial phonon (thereby par-tially ompensating its frequeny shift proportional to �2assoiated with magnon-phonon mixing). Although V4 isprobably smaller than V3, sine it involves an additionalderivative of the energy with respet to a phonon dis-plaement, the frequeny shift due to V4 is proportionalto � , whereas that due to V3 is proportional to �2=�E,where �E is the di�erene in energy between the phononand the magnon. Suh a quarti interation has been re-ently invoked by Fennie and Rabe in their treatment ofmagno-phonon interations in ZnCr2O4.87VI. CONCLUSIONIn this paper we have shown in detail how one andesribe the symmetry of magneti and magneto-eletriphenomena and have illustrated the tehnique by dis-ussing several examples reently onsidered in the liter-ature.The prinipal results of this work are� We disussed a method alternative to the tradi-tional one (alled representation analysis) for onstrut-ing allowed spin funtions whih desribe inommensu-rate magneti ordering. In many ases this tehnique anbe espeially simple and does not require an understand-ing of group theory.� For systems with a enter of inversion symmetry,whether the simple method mentioned above or the moretraditional traditional representation formalism is used,it is essential to further inlude the restritions imposedby inversion symmetry, as we pointed out previously.3{7



38� We have illustrated this tehnique by applying itto systematize the magneti struture analysis of severalmultiferrois many of whih had not been analyzed usinginversion symmetry.� We disussed the all these systems how one intro-dues order parameters to haraterize the spin struture.For inommensurate systems these order parameters areinevitably omplex beause the origin of the inommen-surate wave is either free or is only �xed by a very smallloking energy.� By onsidering several examples of multiferrois wefurther illustrated the general appliability of the trilin-ear magneto-eletri oupling of the formM(q)M(�q)P ,whereM(q) is the magnetization at wavevetor q and Pis the uniform spontaneous polarization.� The introdution of an order-parameter desriptionof the spin struture has several advantages. First, of all,sine the transformation properties of the order param-eters under the symmetry operations of the rystal areeasy to analyze, it then is relatively simple to onstrutthe expliit form of trilinear magneto-eletri oupling.This form the allows us to predit how the temperaturedependene of the spontaneous polarization is related tothe various spin order parameters.� Although our formulation is more ompliated thanthose based on spiral magnetism15,16 it allows us to dis-uss all multiferrois so far studied. In ontrast74 thedisussions based on spiral magnetism are not generalenough to disuss systems like RFMO, where the planewithin whih the spins rotate is perpendiular to thepropagation vetor of the magneti state.�We briey disussed the impliations of symmetry inassessing the role of various models proposed for multi-ferrois.�We displayed the perturbation due to the interationof three zone-enter phonons whih leads to the mix-ing of Raman and infrared ative phonon modes whenthe ferroeletri phase is entered.79 This interation alsoleads to an anomalous ontribution to the temperature-dependene of the phonon frequenies whih develops asthe ferroeletri phase is entered.� We presented a general analysis of the dynamis ofmagnon-phonon mixing based on symmetry.ACKNOWLEDGEMENTSI aknowledge inspiration and advie from M. Kenzel-mann who arried out several of the group theoretial al-ulations presented here. It should be obvious that thispaper owes muh to my other ollaborators, espeiallyG. Lawes, T. Yildirim, A. Aharony, O. Entin-Wohlman,C. Broholm, and A. Ramirez. I thank S.-H. Lee for pro-viding me with the �gure of TbMn2O5 and for insistingthat I larify various arguments. I am grateful to G. Gas-parovi for providing me with the �gure of RbFe(MO4)2and for aess to his thesis. I am grateful to the authorsof Ref. 10 for allowing me to reprodue their �gure asFig. 8 and I thank T. Kimura for attrating my attention

to some reent referenes on CuFeO2. I thank J. Villainfor alling my attention to some of the history of repre-sentation theory. I also wish to thank H. D. Drew forproviding me with referenes invoked in Se. V and forseveral instrutive disussions of the experimental onse-quenes of the magnetoeletri oupling.APPENDIX A: FORM OF EIGENVECTORIn this appendix we show that the matrix G of theform of Eq. (86) [and this inludes as a subase the formof Eq. (83)℄ has eigenvetors of the form given in Eq.(87). De�ne G0 � U�1GU, where
U = 266666666664

1 0 0 0 0 0 00 1 0 0 0 0 00 0 1 0 0 0 00 0 0 1=p2 i=p2 0 00 0 0 1=p2 �i=p2 0 00 0 0 0 0 1=p2 i=p20 0 0 0 0 1=p2 �i=p2
377777777775 :(A1)

We �nd thatU�1GU =26666664 a b  p2�0 p2�00 p2�0 p2�00b d e p2�0 p2�00 p2�0 p2�00 e f p20 p200 p2�0 p2�00p2�0 p2�0 p20 g + Æ0 Æ00 �0 + �0 ��00 � �00p2�00 p2�00 p200 Æ00 g � Æ0 �00 � �00 �0 � �0p2�0 p2�0 p2�0 �0 + �0 �00 � �00 h+ �0 �00p2�00 p2�00 p2�00 ��00 � �00 �0 � �0 �00 h� �0
37777775 ;(A2)where �0 and �00 are the real and imaginary parts, re-spetively of � and similarly for the other omplex vari-ables. Note that we have transformed the original matrixinto a real symmetri matrix. Any eigenvetor (whih wedenote jRi) of the transformed matrix has real-valuedomponents and thus satis�es the equationU�1GUjRi = �RjRi; (A3)from whih it follows that[G℄UjRi = �RUjRi; (A4)so that any eigenvetor of G is of the form UjRi, whereall omponents of jRi are real. If jRi has omponentsr1; r2; : : : r7, thenUjRi = [r1; r2; r3; (r4 + ir5)=p2; (r4 � ir5)=p2;(r6 + ir7)=p2; (r6 � ir7)=p2℄ ; (A5)whih has the form asserted.APPENDIX B: IRREPS FOR TMO25In this appendix we give the representation analysisfor TbMn2O5 for wavevetors of the form ( 12 ; 0; q), where



39Irrep E �mx �my �mxmy �E�a 1 1 1 1 1�b 1 -1 1 -1 1� 1 1 -1 -1 1�d 1 -1 -1 1 1�2 2 0 0 0 -2G n 0 0 0 �nTABLE XXII: Charater table for the double group of thewavevetor. In the �rst line we list the �ve lasses of operatorsfor this group. In the last line we indiate the haraters forthe group G whih is indued by the n-dimensional reduiblerepresentation in the spae of the � spin omponent of spinsin a given Wyko� orbit.Spin �1 �2 Spin �1 �2S(q; 1) r1xr1yr1z r2xr2yr2z S(q; 7) r6xr6yr6z �r6x�r6yr6zS(q; 2) r2xr2y�r2z r1xr1y�r1z S(q; 8) r6x�r6y�r6z r6x�r6yr6zS(q; 3) r1x�r1y�r1z �r2xr2yr2z S(q; 9) r3xr3yr3z r4xr4yr4zS(q; 4) r2x�r2yr2z �r1xr1y�r1z S(q; 10) r4xr4y�r4z r3xr3y�r3zS(q; 5) r5xr5yr5z �r5x�r5yr5z S(q; 11) r3x�r3y�r3z �r4xr4yr4zS(q; 6) r5x�r5y�r5z r5x�r5yr5z S(q; 12) r4x�r4yr4z �r3xr3y�r3zTABLE XXIII: Spin funtions (i. e. unit ell Fourier oeÆ-ients) determined by standard representation analysis with-out invoking inversion symmetry. The seond and thirdolumns give the funtions whih transform aording to the�rst and seond olumn of the two dimensional irrep. TheseoeÆients are all omplex parameters.

q has a nonspeial value. The operators we onsider areE, mx, my and mxmy, as de�ned in Table XIII. Notethat m2y(x; y; z) = (x + 1; y; z), so that m2y = �1 for thiswavevetor. Thus, the above set of four operators donot atually form a group. Aordingly we onsider thedouble group whih follows by introduing �E de�nedby m2y = �E, (�E)2 = E, and (�E)O(�E) = O. Sineaddition has no meaning within a group we do not disussadditive properties suh as (E) + (�E) = 0. Then, if wede�ne �O � (�E)O, we have the harater table givenin Table XXII.The Mn4+ Wyko� orbits ontain two atoms and allthe other orbits ontain four atoms. In either ase wemay onsider separately an orbit and a single omponent,x, y, or z of spin. So the orresponding spin funtionsform a basis set of n vetors, where n = 2 for the sin-gle spin omponents of Mn4+ and n = 4, otherwise. Ineah ase, the operations involving mx and/or my inter-hange sites and therefore have zero diagonal elements.Their harater, whih is their trae within this spae ofn vetors is therefore zero. On the other hand E and�E give diagonal elements of +1 and �1, respetively.So their harater (or trae) is �n and we have the lastline of the table for this reduible representation G.In this harater table we also list (in the last line) theharaters of these operations within the vetor spae ofwavefuntions of a given spin omponent over a Wyko�orbit of n sites. Comparing this last line of the table tothe harater of the irreps we see thatG ontains only theirrep �2 and it ontains this irrep n=2 times. This meansthat for the system of three spin omponents over 12sites, we have 36 omplex omponents and these funtiongenerate a reduible representation whih ontains �2 18times. If there were no other symmetries to onsider,this result would imply that to determine the strutureone would have to �x the 18 omplex-valued parameters.The two dimensional representation an be realized byEq. (125). The basis vetors whih transform as the �rstand seond olumns, respetively of the two dimensionalrepresentation are given in Table XXIII. One an hekthe entries of this table by verifying that the e�et ofmx and my on the vetors of this table are in onformitywith Eq. (125).However, after taking aount of inversion symmetrywe have only 18 real-valued strutural parameters of Ta-ble XVI to determine.1 M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).2 T. Kimura, T. Goto, H. Shintani, K. Ishizka, T. Arima,and Y. Tokura, Nature 426, 55 (2003).3 M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J.Shafer, S. B. Kim, C. L. Zhang, S.-W. Cheong, O. P. Vajk,and J. W. Lynn, Phys. Rev. Lett. 95, 087206 (2005).4 G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava,A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzel-
mann, C. Broholm, and A. P. Ramirez, Phys. Rev. Lett.95, 087205 (2005)5 A. B. Harris, J. Appl. Phys. 99, 08E303 (2006).6 M. Kenzelmann, A. B. Harris, A. Aharony, O. Entin-Wohlman, T. Yildirim, Q. Huang, S. Park, G. Lawes, C.Broholm, N. Rogado, R. J. Cava, K. H. Kim, G. Jorge,and A. P. Ramirez, Phys. Rev. B 74, 014429 (2006).7 A. B. Harris and G. Lawes, "Ferroeletriity in Inommen-
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